THIRD EDITION Introduction to Random Signals and Applied Kalman Filtering

WITH MATLAB EXERCISES AND SOLUTIONS

Robert Grover Brown

Electrical Engineering Department Iowa State University

Patrick Y. C. Hwang

Rockwell International Corporation

JOHN WILEY & SONS New York • Chichester • Brisbane • Toronto • Singapore • Weinheim

Contents

1 Probability and Random Variables: A Review

1.1	Random Signals 1
1.2	Intuitive Notion of Probability 2
1.3	Axiomatic Probability 5
1.4	Joint and Conditional Probability 11
1.5	Independence 15
1.6	Random Variables 16
1.7	Probability Distribution and Density Functions 19
1.8	Expectation, Averages, and Characteristic Function 21
1.9	Normal or Gaussian Random Variables 25
1.10	Impulsive Probability Density Functions 29
1.11	Multiple Random Variables 30
1,12	Correlation, Covariance, and Orthogonality 36
1.13	Sum of Independent Random Variables and
	Tendency Toward Normal Distribution 38
1.14	Transformation of Random Variables 42
1.15	Multivariate Normal Density Function 49
1.16	Linear Transformation and General Properties of Normal Random Variables 53
1.17	Limits, Convergence, and Unbiased Estimators 57

2 Mathematical Description of Random Signals

2.1 Concept of a Random Process 72

2.2 Probabilistic Description of a Random Process 75

72

1

- 2.3 Gaussian Random Process 78
- 2.4 Stationarity, Ergodicity, and Classification of Processes 78
- 2.5 Autocorrelation Function 80
- 2.6 Crosscorrelation Function 84
- 2.7 Power Spectral Density Function 86
- 2.8 Cross Spectral Density Function 91
- 2.9 White Noise 92
- 2.10 Gauss-Markov Process 94
- 2.11 Random Telegraph Wave 96
- 2.12 Narrowband Gaussian Process 98
- 2.13 Wiener or Brownian-Motion Process 100
- 2.14 Pseudorandom Signals 103
- 2.15 Determination of Autocorrelation and Spectral Density Functions from Experimental Data 105
- 2.16 Sampling Theorem 111
- 2.17 Discrete Fourier Transform and Fast Fourier Transform 113

3 Response of Linear Systems to Random Inputs

- 3.1 Introduction: The Analysis Problem 128
- 3.2 Stationary (Steady-State) Analysis 129
- 3.3 Integral Tables for Computing Mean-Square Value 132
- 3.4 Pure White Noise and Bandlimited Systems 134
- 3.5 Noise Equivalent Bandwidth 135
- 3.6 Shaping Filter 137
- 3.7 Nonstationary (Transient) Analysis—Initial Condition Response 138
- 3.8 Nonstationary (Transient) Analysis—Forced Response 140
- 3.9 Discrete-Time Process Models and Analysis 144
- 3.10 Summary 147

4 Wiener Filtering

- 4.1 The Wiener Filter Problem 159
- 4.2 Optimization with Respect to a Parameter 161
- 4.3 The Stationary Optimization Problem—Weighting Function Approach 163
- 4.4 The Nonstationary Problem 172
- 4.5 Orthogonality 177
- 4.6 Complementary Filter 178
- 4.7 The Discrete Wiener Filter 181
- 4.8 Perspective 183

128

190

5 The Discrete Kalman Filter, State-Space Modeling, and Simulation

- 5.1 A Simple Recursive Example 190
- 5.2 Vector Description of a Continuous-Time Random Process 192
- 5.3 Discrete-Time Model 198
- 5.4 Monte Carlo Simulation of Discrete-Time Systems 210
- 5.5 The Discrete Kalman Filter 214
- 5.6 Scalar Kalman Filter Examples 220
- 5.7 Augmenting the State Vector and Multiple-Input/Multiple-Output Example 225
- 5.8 The Conditional Density Viewpoint 228

6 Prediction, Applications, and More Basics on Discrete Kalman Filtering

242

6.1	Prediction 242
6.2	Alternative Form of the Discrete Kalman Filter 246
6.3	Processing the Measurement Vector One Component at a Time 250
6.4	Power System Relaying Application 252
6.5	Power Systems Harmonics Determination 256
6.6	Divergence Problems 260
6.7	Off-Line System Error Analysis 264
6.8	Relationship to Deterministic Least Squares and Note on Estimating a Constant 270
6.9	Discrete Kalman Filter Stability 275
6.10	Deterministic Inputs 277
6.11	Real-Time Implementation Issues 278

6.12 Perspective 281

7 The Continuous Kalman Filter

- 7.1 Transition from the Discrete to Continuous Filter Equations 290
- 7.2 Solution of the Matrix Riccati Equation 293
- 7.3 Correlated Measurement and Process Noise 296
- 7.4 Colored Measurement Noise 299
- 7.5 Suboptimal Error Analysis 304
- 7.6 Filter Stability in Steady-State Condition 305
- 7.7 Relationship Between Wiener and Kalman Filters 306

289

8 Smoothing

- 8.1 Classification of Smoothing Problems 312
- 8.2 Discrete Fixed-Interval Smoothing 313
- 8.3 Discrete Fixed-Point Smoothing 317
- 8.4 Fixed-Lag Smoothing 320
- 8.5 Forward–Backward Filter Approach to Smoothing 322

9 Linearization and Additional Intermediate-Level Topics on Applied Kalman Filtering

335

- 9.1 Linearization 335
- 9.2 Correlated Process and Measurement Noise for the Discrete Filter. Delayed-State Example 348
- 9.3 Adaptive Kalman Filter (Multiple Model Adaptive Estimator) 353
- 9.4 Schmidt-Kalman Filter. Reducing the Order of the State Vector 361
- 9.5 U-D Factorization 367
- 9.6 Decentralized Kalman Filter 371
- 9.7 Stochastic Linear Regulator Problem and the Separation Theorem 377

10 More on Modeling: Integration of Noninertial Measurements Into INS

392

- 10.1 Complementary Filter Methodology 392
- 10.2 INS Error Models 396
- 10.3 Damping the Schuler Oscillation with External Velocity Reference Information 402
- 10.4 Baro-Aided INS Vertical Channel Model 407
- 10.5 Integrating Position Measurements 410
- 10.6 Other Integration Considerations 413

11 The Global Positioning System: A Case Study 419

- 11.1 Description of GPS 419
- 11.2 The Observables 423
- 11.3 GPS Error Models 426
- 11.4 GPS Dynamic Error Models Using Inertially-Derived Reference Trajectory 432

	11.5 11.6 11.7 11.8	Stand-Alone GPS Models 437 Effects of Satellite Geometry 443 Differential and Kinematic Positioning 445 Other Applications 449	
APPENDIX	Α	Laplace and Fourier Transforms	461
	A.1 A.2 A.3	The One-Sided Laplace Transform 461 The Fourier Transform 464 Two-Sided Laplace Transform 466	
APPENDIX	В	Typical Navigation Satellite Geometry	474
APPENDIX	C	Kalman Filter Software	478
	Inde	≥x	481