Optical Fiber Sensors Volume Three

Components and Subsystems

Brian Culshaw John Dakin

Artech House Boston • London

Contents

Ĝł:

\$7		
5.2		
Preface	2	ix
Chapter	r 1 Revisiting Optical-Fiber Sensors	1
00 1.1	Introduction	1
5 1.2	Fiber Sensors—Why They Are Still Interesting	2
1.3	What Has Happened in the Interim—The Major	
	Technical Innovations	3
1.4	Consolidating the Applications	6
1.5	The Basics Are Still the Basics	7
1.6	And for the Future	8
Chapter	r 2 Fiber Gratings	9
2.1	Introduction	9
2.2	Optical Properties	12
А. т.	2.2.1 Coupled-Wave Theory	13
	2.2.2 Bragg Gratings	15
	2.2.3 Bragg Grating Output Couplers	19
	2.2.4 Long-Period Codirectional Grating Couple	rs 20
2.3	Grating Fabrication: Writing Techniques	21
	2.3.1 Internal	22
	2.3.2 External	23
	2.3.3 Nonuniform Gratings	26
2.4	Grating Fabrication: Writing Regimes	27
68.	2.4.1 Continuous Wave	27
96	2.4.2 Multiple Pulse and Single Pulse	27
80	2.4.3 Type I, II, and III Gratings	28
2.5	Characterization and Design of Gratings	32
	2.5.1 Optical Characterization Techniques	32
	2.5.2 Design Limits	34
2.6	Origins and Control of Photosensitivity	35
40.t		

v

	2.6.1	Characteristics of Photoinduced Index Change	36
	2.6.2	Models for Photoinduced Index Change	37
	2.6.3	Techniques for Enhancing Photosensitivity	40
2.7	Physics	al Properties	45
	2.7.1	Temperature, Strain, and Pressure Dependence	45
	2.7.2	Thermal Stability and Aging	46
2.8	Applic	ations	49
	2.8.1	Laser Diode Stabilization	49
	2.8.2	Fiber Amplifiers	51
	2.8.3	Fiber Lasers	52
	2.8.4	Bandpass and Add-Drop Filters	55
	2.8.5	Dispersion Compensation	58
2.9	Conclu	sions	59
Refer	ences		60
Selec	ted Bibli	ography	67
Chapter	3 Eva	nescently Coupled Components	69
3.1	Introdu	action	69
3.2	Evanes	scent Waves for Chemical Sensor Applications	70
	3.2.1	Introduction to Fiber-Optic Chemical Sensors	70
	3.2.2	Fundamental Principles of Optical Chemical Sensors	70
	3.2.3	Evanescent Field Sensor Types	73
	3.2.4	Operation and Sensitivity of Evanescent Field Chemical	
		Sensors	75
	3.2.5	Sol-Gel Coatings for Evanescent Field Sensors	83
	3.2.6	Surface Contamination in Evanescent Wave Sensors	84
	3.2.7	Examples of Evanescent Field Sensors	85
	3.2.8	Evanescently Coupled Chemically Active	
		Components-Conclusion	86
3.3	Fiber-t	o-Planar Waveguide Couplers	87
	3.3.1	Introduction	87
	3.3.2	Evanescent Field Exposure—Side-Polished Fiber Blocks	88
	3.3.3	Thin Metal Film Surface Plasmon Polarizers	88
	3.3.4	Bandstop Filters	89
	3.3.5	Bandpass Filters	96
	3.3.6	Fiber-to-Planar Waveguide Couples—Conclusion	- 98
Refer	ences	с .	99
Chapter	4 Opti	ical-Fiber Lasers and Amplifiers	103
4.1	Introdu	action	103
4.2	Optical	l-Fiber Lasers	104
	4.2.1	Fiber Laser Resonators	106

	4.2.2	Rare-Earth-Doped Fiber Laser Transitions	107			
	4.2.3	Single-Frequency and Pulsed Fiber Laser	117			
4.3	Optical	l-Fiber Amplifiers	118			
	4.3.1	Erbium-Doped Fiber Amplifiers	121			
	4.3.2	Neodymium- and Praseodymium-Doped Fiber Amplifiers	126			
	4.3.3	Nonlinear Fiber Amplifiers	128			
4.4	Fiber I	Lasers and Amplifiers in Sensing Applications	134			
	4.4.1	Fiber Lasers	134			
	4.4.2	Fiber Amplifiers	137			
4.5	Conclu	sions	141			
Refer	ences		142			
Chapter	5 Adv	ances in High-Speed OTDR Detection Techniques	145			
5.1	Introdu	action	145			
5.2	Basic C	Considerations for High-Speed, High-Sensitivity Detection	150			
5.3	Basic C	Concepts of Photon Counting	154			
	5.3.1	The Photon-Counting Process: Sensitivity, Nonlinearity,				
		and Dynamic Range	156			
	5.3.2	Minimum Detectable Signal Levels	160			
5.4	Photon	Counting Using Semiconductor APD Devices	163			
	5.4.1	Geiger-Mode Operation of Avalanche Photodiodes	163			
	5.4.2	Photon Counting: Time-Dependence of the Avalanche				
		Current	165			
	5.4.3	Quantum Efficiency and Traps	169			
	5.4.4	Influence of Traps on the Photon-Counting Process	170			
5.5	Sensitiv	vity and Measurement Time Issues for Low-Level				
	Signal	Signal Detection				
	5.5.1	Photon-Counting System-Level Tradeoff Evaluation				
		in Practical Cases	176			
5.6	Potenti	al Advances in Detection and Signal-Generation Techniques	183			
	5.6.1	Signal-Generation Enhancement	186			
Refer	rences		188			
Chapter	6 Spec	tral Measurement Techniques for Optical-Fiber Sensors	191			
6.1	Introdu	iction	191			
	6.1.1	Spectral Measurements in Optical-Fiber Sensor Systems	191			
	6.1.2	Spectral Measurements—An Overview	192			
6.2	Review	of Spectral Measurement Techniques	193			
	6.2.1	Spectrometers and Monochromators	193			
	6.2.2	Tunable Lasers	198			
	6.2.3	Electronic Color Measurement Systems	201			
	6.2.4	Interferometric Filters for Spectral Analysis	204			

6.3	Case Studies	212
	6.3.1 A Compact Rugged Spectrometer for	
	Fiber-Optic Applications	212
	6.3.2 Decoding Bragg Grating Sensors	214
6.4	Selecting Spectral Measurement Techniques for Fiber-Optic Systems	220
	6.4.1 Defining the Spectral Measurement Process	220
	6.4.2 Optical Sources for Spectral Measurement	221
	6.4.3 Spectrometers—Global Properties	221
6.5	Concluding Observations	221
Refer	ences	224
About th	e Authors	225
Index		229