David Colton Rainer Kress

Inverse Acoustic and Electromagnetic Scattering Theory

Second Edition

Table of Contents

1	Intre	$\operatorname{pduction}$	1
	1.1	The Direct Scattering Problem	2
	1.2	The Inverse Scattering Problem	7
2	The	Helmholtz Equation	3
	2.1	Acoustic Waves	3
	2.2	Green's Theorem and Formula	6
	2.3	Spherical Harmonics	1
	2.4	Spherical Bessel Functions	8
	2.5	The Far Field Mapping	2
3	Dire	ct Acoustic Obstacle Scattering	8
	3.1	Single- and Double-Layer Potentials	9
	3.2	Scattering from a Sound-Soft Obstacle	6
	3.3	The Reciprocity Relation	4
	3.4	The Two-Dimensional Case	4
	3.5	On the Numerical Solution in \mathbb{R}^2	7
	3.6	On the Numerical Solution in \mathbb{R}^3	8
4	Ill-F	Posed Problems	5
	4.1	The Concept of Ill-Posedness	6
	4.2	Regularization Methods 8	7
	4.3	Singular Value Decomposition	9
	4.4	Tikhonov Regularization	7
	4.5	Nonlinear Operators	2
5	Inve	rse Acoustic Obstacle Scattering	5
	5.1	Uniqueness	6
	5.2	Physical Optics Approximation 11	3
	5.3	Continuity and Differentiability of the Far Field Mapping 11	4
	5.4	Approximation of the Scattered Field	4
	5.5	Superposition of the Incident Fields	5

6	The Maxwell Equations				153
	6.1 Electromagnetic Waves				154
	6.2 Green's Theorem and Formula				155
	6.3 Vector Potentials				165
	6.4 Scattering from a Perfect Conductor				172
	6.5 Vector Wave Functions				177
	6.6 The Reciprocity Relation	•			185
7	Inverse Electromagnetic Obstacle Scattering				195
	7.1 Uniqueness				195
	7.2 Continuous Dependence on the Boundary				199
	7.3 Approximation of the Scattered Field				203
	7.4 Superposition of the Incident Fields	•	•		206
8	Acoustic Waves in an Inhomogeneous Medium				211
	8.1 Physical Background				212
	8.2 The Lippmann–Schwinger Equation				214
	8.3 The Unique Continuation Principle				218
	8.4 Far Field Patterns				222
	8.5 The Analytic Fredholm Theory				233
	8.6 Transmission Eigenvalues				238
	8.7 Numerical Methods	•			246
9	Electromagnetic Waves in an Inhomogeneous Medium				
	9.1 Physical Background				251
	9.2 Existence and Uniqueness				252
	9.3 Far Field Patterns				256
	9.4 The Spherically Stratified Dielectric Medium				259
	9.5 The Exterior Impedance Boundary Value Problem				264
10	The Inverse Medium Problem				271
	10.1 The Inverse Medium Problem for Acoustic Waves				272
	10.2 A Uniqueness Theorem				274
	10.3 A Dual Space Method				280
	10.4 A Modified Dual Space Method				285
	10.5 The Inverse Medium Problem for Electromagnetic Waves				289
	10.6 Numerical Examples				300
	10.7 The Two-Dimensional Case	•	•	•••	307
Re	ferences				318
Inc	dex				332