A MOLECULAR APPROACH

Donald A. McQuarrie

UNIVERSITY OF CALIFORNIA, DAVIS

John D. Simon

UNIVERSITY OF CALIFORNIA, SAN DIEGO

University Science Books Sausalito, California

Contents

Preface xvii To the Student xvii To the Instructor xix Acknowledgment xxiii

CHAPTER 1 / The Dawn of the Quantum Theory

- 1-1. Blackbody Radiation Could Not Be Explained by Classical Physics 2
- 1-2. Planck Used a Quantum Hypothesis to Derive the Blackbody Radiation Law 4
- **1-3.** Einstein Explained the Photoelectric Effect with a Quantum Hypothesis 7
- 1-4. The Hydrogen Atomic Spectrum Consists of Several Series of Lines 10
- 1-5. The Rydberg Formula Accounts for All the Lines in the Hydrogen Atomic Spectrum 13
- 1-6. Louis de Broglie Postulated That Matter Has Wavelike Properties 15
- 1-7. de Broglie Waves Are Observed Experimentally 16
- **1-8.** The Bohr Theory of the Hydrogen Atom Can Be Used to Derive the Rydberg Formula 18
- 1-9. The Heisenberg Uncertainty Principle States That the Position and the Momentum of a Particle Cannot Be Specified Simultaneously with Unlimited Precision 23
 Problems 25

MATHCHAPTER A / Complex Numbers 31

Problems 35

CHAPTER 2 / The Classical Wave Equation 39

2-1. The One-Dimensional Wave Equation Describes the Motion of a Vibrating String 39

- **2-2.** The Wave Equation Can Be Solved by the Method of Separation of Variables 40
- **2-3.** Some Differential Equations Have Oscillatory Solutions 44

2-4. The General Solution to the Wave Equation Is a Superposition of Normal Modes 46
2-5. A Vibrating Membrane Is Described by a Two-Dimensional Wave Equation 49
Problems 54

MATHCHAPTER B / Probability and Statistics 63

Problems 70

CHAPTER 3 / The Schrödinger Equation and a Particle In a Box 73

- **3-1.** The Schrödinger Equation Is the Equation for Finding the Wave Function of a Particle 73
- 3-2. Classical-Mechanical Quantities Are Represented by Linear Operators in Quantum Mechanics 75
- 3-3. The Schrödinger Equation Can Be Formulated As an Eigenvalue Problem 77
- 3-4. Wave Functions Have a Probabilistic Interpretation 80
- 3-5. The Energy of a Particle in a Box Is Quantized 81
- 3-6. Wave Functions Must Be Normalized 84
- 3-7. The Average Momentum of a Particle in a Box Is Zero 86
- **3-8.** The Uncertainty Principle Says That $\sigma_p \sigma_x > \hbar/2$ 88
- **3-9.** The Problem of a Particle in a Three-Dimensional Box Is a Simple Extension of the One-Dimensional Case 90

Problems 96

MATHCHAPTER C / Vectors 105

Problems 113

CHAPTER 4 / Some Postulates and General Principles of Quantum Mechanics 115

- 4-1. The State of a System Is Completely Specified by Its Wave Function 115
- **4-2.** Quantum-Mechanical Operators Represent Classical-Mechanical Variables 118
- 4-3. Observable Quantities Must Be Eigenvalues of Quantum Mechanical Operators 122
- **4-4.** The Time Dependence of Wave Functions Is Governed by the Time-Dependent Schrödinger Equation 125
- 4-5. The Eigenfunctions of Quantum Mechanical Operators Are Orthogonal 127
- 4-6. The Physical Quantities Corresponding to Operators That Commute Can Be Measured Simultaneously to Any Precision 131

Problems 134

MATHCHAPTER D / Spherical Coordinates 147

Problems 153

CHAPTER 5 / The Harmonic Oscillator and the Rigid Rotator: Two Spectroscopic Models 157

- 5-1. A Harmonic Oscillator Obeys Hooke's Law 157
- **5-2.** The Equation for a Harmonic-Oscillator Model of a Diatomic Molecule Contains the Reduced Mass of the Molecule 161
- 5-3. The Harmonic-Oscillator Approximation Results from the Expansion of an Internuclear Potential Around Its Minimum 163
- **5-4.** The Energy Levels of a Quantum-Mechanical Harmonic Oscillator Are $E_v = \hbar\omega(v + \frac{1}{2})$ with v = 0, 1, 2, ... 166
- 5-5. The Harmonic Oscillator Accounts for the Infrared Spectrum of a Diatomic Molecule 167
- 5-6. The Harmonic-Oscillator Wave Functions Involve Hermite Polynomials 169
- **5-7.** Hermite Polynomials Are Either Even or Odd Functions 172
- **5-8.** The Energy Levels of a Rigid Rotator Are $E = \hbar^2 J (J+1)/2I$ 173

5-9. The Rigid Rotator Is a Model for a Rotating Diatomic Molecule 177 **Problems** 179

CHAPTER 6 / The Hydrogen Atom 191

- 6-1. The Schrödinger Equation for the Hydrogen Atom Can Be Solved Exactly 191
- 6-2. The Wave Functions of a Rigid Rotator Are Called Spherical Harmonics 193
- **6-3.** The Precise Values of the Three Components of Angular Momentum Cannot Be Measured Simultaneously 200
- 6-4. Hydrogen Atomic Orbitals Depend upon Three Quantum Numbers 206
- 6-5. s Orbitals Are Spherically Symmetric 209
- **6-6.** There Are Three *p* Orbitals for Each Value of the Principal Quantum Number, $n \ge 2$ 213

6-7. The Schrödinger Equation for the Helium Atom Cannot Be Solved Exactly 219 **Problems** 220

MATHCHAPTER E / Determinants 231

Problems 238

CHAPTER 7 / Approximation Methods 241

- 7-1. The Variational Method Provides an Upper Bound to the Ground-State Energy of a System 241
- **7-2.** A Trial Function That Depends Linearly on the Variational Parameters Leads to a Secular Determinant 249
- **7-3.** Trial Functions Can Be Linear Combinations of Functions That Also Contain Variational Parameters 256
- **7-4.** Perturbation Theory Expresses the Solution to One Problem in Terms of Another Problem Solved Previously 257

Problems 261

CHAPTER 8 / Multielectron Atoms 275

- 8-1. Atomic and Molecular Calculations Are Expressed in Atomic Units 275
- **8-2.** Both Perturbation Theory and the Variational Method Can Yield Excellent Results for Helium 278
- 8-3. Hartree–Fock Equations Are Solved by the Self-Consistent Field Method 282
- 8-4. An Electron Has an Intrinsic Spin Angular Momentum 284
- 8-5. Wave Functions Must Be Antisymmetric in the Interchange of Any Two Electrons 285
- 8-6. Antisymmetric Wave Functions Can Be Represented by Slater Determinants 288
- 8-7. Hartree–Fock Calculations Give Good Agreement with Experimental Data 290
- 8-8. A Term Symbol Gives a Detailed Description of an Electron Configuration 292
- **8-9.** The Allowed Values of J are L + S, L + S 1, ..., |L S| = 296
- 8-10. Hund's Rules Are Used to Determine the Term Symbol of the Ground Electronic State 301

8-11. Atomic Term Symbols Are Used to Describe Atomic Spectra 302 **Problems** 308

CHAPTER 9 / The Chemical Bond: Diatomic Molecules 323

- **9-1.** The Born-Oppenheimer Approximation Simplifies the Schrödinger Equation for Molecules 323
- **9-2.** H_2^+ Is the Prototypical Species of Molecular-Orbital Theory 325
- **9-3.** The Overlap Integral Is a Quantitative Measure of the Overlap of Atomic Orbitals Situated on Different Atoms 327
- 9-4. The Stability of a Chemical Bond Is a Quantum-Mechanical Effect 329
- **9-5.** The Simplest Molecular Orbital Treatment of H₂⁺ Yields a Bonding Orbital and an Antibonding Orbital 333
- **9-6.** A Simple Molecular-Orbital Treatment of H₂ Places Both Electrons in a Bonding Orbital 336
- 9-7. Molecular Orbitals Can Be Ordered According to Their Energies 336
- **9-8.** Molecular-Orbital Theory Predicts That a Stable Diatomic Helium Molecule Does Not Exist 341
- **9-9.** Electrons Are Placed into Molecular Orbitals in Accord with the Pauli Exclusion Principle 342
- **9-10.** Molecular-Orbital Theory Correctly Predicts That Oxygen Molecules Are Paramagnetic 344
- 9-11. Photoelectron Spectra Support the Existence of Molecular Orbitals 346
- 9-12. Molecular–Orbital Theory Also Applies to Heteronuclear Diatomic Molecules 346
- 9-13. An SCF–LCAO–MO Wave Function Is a Molecular Orbital Formed from a Linear Combination of Atomic Orbitals and Whose Coefficients Are Determined Self-Consistently 349
- 9-14. Electronic States of Molecules Are Designated by Molecular Term Symbols 355
- **9-15.** Molecular Term Symbols Designate the Symmetry Properties of Molecular Wave Functions 358
- 9-16. Most Molecules Have Excited Electronic States 360
- Problems 362

CHAPTER 10 / Bonding In Polyatomic Molecules 371

- **10-1.** Hybrid Orbitals Account for Molecular Shape 371
- **10-2.** Different Hybrid Orbitals Are Used for the Bonding Electrons and the Lone Pair Electrons in Water 378
- **10-3.** Why is BeH, Linear and H₂O Bent? 381
- 10-4. Photoelectron Spectroscopy Can Be Used to Study Molecular Orbitals 387
- **10-5.** Conjugated Hydrocarbons and Aromatic Hydrocarbons Can Be Treated by a π -Electron Approximation 390
- **10-6.** Butadiene Is Stabilized by a Delocalization Energy 393

Problems 399

CHAPTER 11 / Computational Quantum Chemistry 411

- 11-1. Gaussian Basis Sets Are Often Used in Modern Computational Chemistry 411
- **11-2.** Extended Basis Sets Account Accurately for the Size and Shape of Molecular Charge Distributions 417
- 11-3. Asterisks in the Designation of a Basis Set Denote Orbital Polarization Terms 422
- **11-4.** The Ground-State Energy of H₂ can be Calculated Essentially Exactly 425
- **11-5.** Gaussian 94 Calculations Provide Accurate Information About Molecules 427

Problems 434

MATHCHAPTER F / Matrices 441

Problems 448

CHAPTER 12 / Group Theory: The Exploitation of Symmetry 453

- **12-1.** The Exploitation of the Symmetry of a Molecule Can Be Used to Significantly Simplify Numerical Calculations 453
- 12-2. The Symmetry of Molecules Can Be Described by a Set of Symmetry Elements 455
- 12-3. The Symmetry Operations of a Molecule Form a Group 460
- 12-4. Symmetry Operations Can Be Represented by Matrices 464
- **12-5.** The C_{3y} Point Group Has a Two-Dimensional Irreducible Representation 468
- **12-6.** The Most Important Summary of the Properties of a Point Group Is Its Character Table 471
- **12-7.** Several Mathematical Relations Involve the Characters of Irreducible Representations 474
- **12-8.** We Use Symmetry Arguments to Predict Which Elements in a Secular Determinant Equal Zero 480
- **12-9.** Generating Operators Are Used to Find Linear Combinations of Atomic Orbitals That Are Bases for Irreducible Representations 484

Problems 489

CHAPTER 13 / Molecular Spectroscopy 495

- **13-1.** Different Regions of the Electromagnetic Spectrum Are Used to Investigate Different Molecular Processes 495
- 13-2. Rotational Transitions Accompany Vibrational Transitions 497
- **13-3.** Vibration–Rotation Interaction Accounts for the Unequal Spacing of the Lines in the *P* and *R* Branches of a Vibration–Rotation Spectrum 501
- 13-4. The Lines in a Pure Rotational Spectrum Are Not Equally Spaced 503
- 13-5. Overtones Are Observed in Vibrational Spectra 504
- 13-6. Electronic Spectra Contain Electronic, Vibrational, and Rotational Information 507
- **13-7.** The Franck–Condon Principle Predicts the Relative Intensities of Vibronic Transitions 511
- **13-8.** The Rotational Spectrum of a Polyatomic Molecule Depends Upon the Principal Moments of Inertia of the Molecule 514
- **13-9.** The Vibrations of Polyatomic Molecules Are Represented by Normal Coordinates 518
- **13-10.** Normal Coordinates Belong to Irreducible Representations of Molecular Point Groups 523
- 13-11. Selection Rules Are Derived from Time-Dependent Perturbation Theory 527
- **13-12.** The Selection Rule in the Rigid Rotator Approximation Is $\Delta J = \pm 1$ 531
- **13-13.** The Harmonic-Oscillator Selection Rule Is $\Delta v = \pm 1$ 533
- **13-14.** Group Theory Is Used to Determine the Infrared Activity of Normal Coordinate Vibrations 535

Problems 537

CHAPTER 14 / Nuclear Magnetic Resonance Spectroscopy 547

- 14-1. Nuclei Have Intrinsic Spin Angular Momenta 548
- 14-2. Magnetic Moments Interact with Magnetic Fields 550
- **14-3.** Proton NMR Spectrometers Operate at Frequencies Between 60 MHz and 750 MHz 554
- 14-4. The Magnetic Field Acting upon Nuclei in Molecules Is Shielded 556
- 14-5. Chemical Shifts Depend upon the Chemical Environment of the Nucleus 560
- 14-6. Spin–Spin Coupling Can Lead to Multiplets in NMR Spectra 562

14-7. Spin–Spin Coupling Between Chemically Equivalent Protons Is Not Observed 570

14-8. The n + 1 Rule Applies Only to First-Order Spectra 573

14-9. Second-Order Spectra Can Be Calculated Exactly Using the Variational Method 576 **Problems** 585

CHAPTER 15 / Lasers, Laser Spectroscopy, and Photochemistry 591

- **15-1.** Electronically Excited Molecules Can Relax by a Number of Processes 592
- **15-2.** The Dynamics of Spectroscopic Transitions Between the Electronic States of Atoms Can Be Modeled by Rate Equations 595
- **15-3.** A Two-Level System Cannot Achieve a Population Inversion 601
- **15-4.** Population Inversion Can Be Achieved in a Three-Level System 603
- 15-5. What Is Inside a Laser? 604
- **15-6.** The Helium–Neon Laser is an Electrical-Discharge Pumped, Continuous-Wave, Gas-Phase Laser 609
- **15-7.** High-Resolution Laser Spectroscopy Can Resolve Absorption Lines That Cannot Be Distinguished by Conventional Spectrometers 613
- **15-8.** Pulsed Lasers Can Be Used to Measure the Dynamics of Photochemical Processes 614

Problems 620

MATHCHAPTER G / Numerical Methods 627

Problems 634

CHAPTER 16 / The Properties of Gases 637

16-1. All Gases Behave Ideally If They Are Sufficiently Dilute 637

- **16-2.** The van der Waals Equation and the Redlich–Kwong Equation Are Examples of Two-Parameter Equations of State 642
- 16-3. A Cubic Equation of State Can Describe Both the Gaseous and Liquid States 648
- **16-4.** The van der Waals Equation and the Redlich–Kwong Equation Obey the Law of Corresponding States 655
- 16-5. Second Virial Coefficients Can Be Used to Determine Intermolecular Potentials 658
- **16-6.** London Dispersion Forces Are Often the Largest Contribution to the r^{-6} Term in the Lennard–Jones Potential 665

16-7. The van der Waals Constants Can Be Written in Terms of Molecular Parameters 670 **Problems** 674

MATHCHAPTER H / Partial Differentiation 683

Problems 689

CHAPTER 17 / The Boltzmann Factor and Partition Functions 693

- **17-1.** The Boltzmann Factor Is One of the Most Important Quantities in the Physical Sciences 694
- **17-2.** The Probability That a System in an Ensemble Is in the State *j* with Energy $E_j(N, V)$ Is Proportional to $e^{-E_j(N, V)/k_BT}$ 696
- **17-3.** We Postulate That the Average Ensemble Energy Is Equal to the Observed Energy of a System 698
- **17-4.** The Heat Capacity at Constant Volume Is the Temperature Derivative of the Average Energy 702
- 17-5. We Can Express the Pressure in Terms of a Partition Function 704

- **17-6.** The Partition Function of a System of Independent, Distinguishable Molecules Is the Product of Molecular Partition Functions 707
- **17-7.** The Partition Function of a System of Independent, Indistinguishable Atoms or Molecules Can Usually Be Written as $[q(V, T)]^N/N!$ 708
- **17-8.** A Molecular Partition Function Can Be Decomposed into Partition Functions for Each Degree of Freedom 713

Problems 716

MATHCHAPTER I / Series and Limits 723

Problems 728

CHAPTER 18 / Partition Functions and Ideal Gases 731

- **18-1.** The Translational Partition Function of an Atom in a Monatomic Ideal Gas Is $(2\pi mk_{\rm B}T/h^2)^{3/2}V$ 731
- 18-2. Most Atoms Are in the Ground Electronic State at Room Temperature 733
- **18-3.** The Energy of a Diatomic Molecule Can Be Approximated as a Sum of Separate Terms 737
- 18-4. Most Molecules Are in the Ground Vibrational State at Room Temperature 740
- 18-5. Most Molecules Are in Excited Rotational States at Ordinary Temperatures 743
- 18-6. Rotational Partition Functions Contain a Symmetry Number 746
- **18-7.** The Vibrational Partition Function of a Polyatomic Molecule Is a Product of Harmonic Oscillator Partition Functions for Each Normal Coordinate 749
- **18-8.** The Form of the Rotational Partition Function of a Polyatomic Molecule Depends upon the Shape of the Molecule 752
- **18-9.** Calculated Molar Heat Capacities Are in Very Good Agreement with Experimental Data 754

Problems 757

CHAPTER 19 / The First Law of Thermodynamics 765

- 19-1. A Common Type of Work is Pressure Volume Work 766
- 19-2. Work and Heat Are Not State Functions, but Energy Is a State Function 769
- **19-3.** The First Law of Thermodynamics Says the Energy Is a State Function 773
- 19-4. An Adiabatic Process Is a Process in Which No Energy as Heat Is Transferred 774
- 19-5. The Temperature of a Gas Decreases in a Reversible Adiabatic Expansion 777
- 19-6. Work and Heat Have a Simple Molecular Interpretation 779
- **19-7.** The Enthalpy Change Is Equal to the Energy Transferred as Heat in a Constant-Pressure Process Involving Only P-V Work 780
- **19-8.** Heat Capacity Is a Path Function 783
- **19-9.** Relative Enthalpies Can Be Determined from Heat Capacity Data and Heats of Transition 786
- **19-10.** Enthalpy Changes for Chemical Equations Are Additive 787
- 19-11. Heats of Reactions Can Be Calculated from Tabulated Heats of Formation 791
- **19-12.** The Temperature Dependence of $\Delta_r H$ Is Given in Terms of the Heat Capacities of the Reactants and Products 797
- Problems 800

MATHCHAPTER J / The Binomial Distribution and Stirling's Approximation 809

Problems 814

CHAPTER 20 / Entropy and the Second Law of Thermodynamics 817

- **20-1.** The Change of Energy Alone Is Not Sufficient to Determine the Direction of a Spontaneous Process 817
- **20-2.** Nonequilibrium Isolated Systems Evolve in a Direction That Increases Their Disorder 819
- **20-3.** Unlike $q_{rev'}$ Entropy Is a State Function 821
- **20-4.** The Second Law of Thermodynamics States That the Entropy of an Isolated System Increases as a Result of a Spontaneous Process 825
- **20-5.** The Most Famous Equation of Statistical Thermodynamics Is $S = k_{\rm B} \ln W$ 829
- 20-6. We Must Always Devise a Reversible Process to Calculate Entropy Changes 833
- **20-7.** Thermodynamics Gives Us Insight into the Conversion of Heat into Work 838
- 20-8. Entropy Can Be Expressed in Terms of a Partition Function 840
- **20-9.** The Molecular Formula $S = k_{\rm B} \ln W$ Is Analogous to the Thermodynamic Formula $dS = \delta q_{\rm rev}/T$ 843

Problems 844

CHAPTER 21 / Entropy and the Third Law of Thermodynamics 853

- 21-1. Entropy Increases with Increasing Temperature 853
- **21-2.** The Third Law of Thermodynamics Says That the Entropy of a Perfect Crystal Is Zero at 0 K 855
- **21-3.** $\Delta_{trs} S = \Delta_{trs} H / T_{trs}$ at a Phase Transition 857
- **21-4.** The Third Law of Thermodynamics Asserts That $C_p \rightarrow 0$ as $T \rightarrow 0$ 858
- **21-5.** Practical Absolute Entropies Can Be Determined Calorimetrically 859
- 21-6. Practical Absolute Entropies of Gases Can Be Calculated from Partition Functions 861
- 21-7. The Values of Standard Entropies Depend upon Molecular Mass and Molecular Structure 865
- **21-8.** The Spectroscopic Entropies of a Few Substances Do Not Agree with the Calorimetric Entropies 868
- **21-9.** Standard Entropies Can Be Used to Calculate Entropy Changes of Chemical Reactions 869
- Problems 870

CHAPTER 22 / Helmholtz and Gibbs Energies 881

- **22-1.** The Sign of the Helmholtz Energy Change Determines the Direction of a Spontaneous Process in a System at Constant Volume and Temperature 881
- **22-2.** The Gibbs Energy Determines the Direction of a Spontaneous Process for a System at Constant Pressure and Temperature 884
- 22-3. Maxwell Relations Provide Several Useful Thermodynamic Formulas 888
- 22-4. The Enthalpy of an Ideal Gas Is Independent of Pressure 893
- 22-5. The Various Thermodynamic Functions Have Natural Independent Variables 896
- **22-6.** The Standard State for a Gas at Any Temperature Is the Hypothetical Ideal Gas at One Bar 899
- **22-7.** The Gibbs–Helmholtz Equation Describes the Temperature Dependence of the Gibbs Energy 901
- **22-8.** Fugacity Is a Measure of the Nonideality of a Gas 905 **Problems** 910

CHAPTER 23 / Phase Equilibria 925

- **23-1.** A Phase Diagram Summarizes the Solid–Liquid–Gas Behavior of a Substance 926
- 23-2. The Gibbs Energy of a Substance Has a Close Connection to Its Phase Diagram 933
- **23-3.** The Chemical Potentials of a Pure Substance in Two Phases in Equilibrium Are Equal 935
- **23-4.** The Clausius–Clapeyron Equation Gives the Vapor Pressure of a Substance As a Function of Temperature 941

23-5. Chemical Potential Can Be Evaluated from a Partition Function 945 **Problems** 949

CHAPTER 24 / Chemical Equilibrium 963

- **24-1.** Chemical Equilibrium Results when the Gibbs Energy Is a Minimum with Respect to the Extent of Reaction 963
- 24-2. An Equilibrium Constant Is a Function of Temperature Only 967
- **24-3.** Standard Gibbs Energies of Formation Can Be Used to Calculate Equilibrium Constants 970
- **24-4.** A Plot of the Gibbs Energy of a Reaction Mixture Against the Extent of Reaction Is a Minimum at Equilibrium 972
- **24-5.** The Ratio of the Reaction Quotient to the Equilibrium Constant Determines the Direction in which a Reaction Will Proceed 974
- **24-6.** The Sign of $\Delta_{r}\overline{G}$ And Not That of $\Delta_{r}G^{\circ}$ Determines the Direction of Reaction Spontaneity 976
- **24-7.** The Variation of an Equilibrium Constant with Temperature Is Given by the Van't Hoff Equation 977
- 24-8. We Can Calculate Equilibrium Constants in Terms of Partition Functions 981
- **24-9.** Molecular Partition Functions and Related Thermodynamic Data Are Extensively Tabulated 985
- **24-10.** Equilibrium Constants for Real Gases Are Expressed in Terms of Partial Fugacities 992

24-11. Thermodynamic Equilibrium Constants Are Expressed in Terms of Activities 994 **Problems** 998

CHAPTER 25 / The Kinetic Theory of Gases 1011

- **25-1.** The Average Translational Kinetic Energy of the Molecules in a Gas Is Directly Proportional to the Kelvin Temperature 1011
- **25-2.** The Distribution of the Components of Molecular Speeds Are Described by a Gaussian Distribution 1016
- **25-3.** The Distribution of Molecular Speeds Is Given by the Maxwell–Boltzmann Distribution 1022
- **25-4.** The Frequency of Collisions That a Gas Makes with a Wall Is Proportional to Its Number Density and to the Average Molecular Speed 1026
- 25-5. The Maxwell–Boltzmann Distribution Has Been Verified Experimentally 1029
- **25-6.** The Mean Free Path Is the Average Distance a Molecule Travels Between Collisions 1031
- 25-7. The Rate of a Gas-Phase Chemical Reaction Depends Upon the Rate of Collisions in which the Relative Kinetic Energy Exceeds Some Critical Value 1037
 Problems 1039

CHAPTER 26 / Chemical Kinetics I: Rate Laws 1047

26-1. The Time Dependence of a Chemical Reaction Is Described by a Rate Law 1048

- 26-2. Rate Laws Must Be Determined Experimentally 1051
- **26-3.** First-Order Reactions Show an Exponential Decay of Reactant Concentration with Time 1054
- 26-4. The Rate Laws for Different Reaction Orders Predict Different Behaviors for the Time-Dependent Reactant Concentration 1058
- **26-5.** Reactions Can Also Be Reversible 1062
- **26-6.** The Rate Constants of a Reversible Reaction Can Be Determined Using Relaxation Methods 1062
- 26-7. Rate Constants Are Usually Strongly Temperature Dependent 1071

26-8. Transition-State Theory Can Be Used to Estimate Reaction Rate Constants 1075 **Problems** 1079

CHAPTER 27 / Chemical Kinetics II: Reaction Mechanisms 1091

- **27-1.** A Mechanism is a Sequence of Single-Step Chemical Reactions called Elementary Reactions 1092
- 27-2. The Principle of Detailed Balance States That when a Complex Reaction is at Equilibrium, the Rate of the Forward Process Is Equal to the Rate of the Reverse Process for Each and Every Step of the Reaction Mechanism 1093
- 27-3. When Are Consecutive and Single-Step Reactions Distinguishable? 1196
- **27-4.** The Steady-State Approximation Simplifies Rate Expressions by Assuming That d[I]/dt = 0, where I is a Reaction Intermediate 1101
- **27-5.** The Rate Law for a Complex Reaction Does Not Imply a Unique Mechanism 1103
- **27-6.** The Lindemann Mechanism Explains How Unimolecular Reactions Occur 1108
- 27-7. Some Reaction Mechanisms Involve Chain Reactions 1113
- 27-8. A Catalyst Affects the Mechanism and Activation Energy of a Chemical Reaction 1116
- **27-9.** The Michaelis–Menten Mechanism Is a Reaction Mechanism for Enzyme Catalysis 1119

Problems 1123

CHAPTER 28 / Gas-Phase Reaction Dynamics 1139

- **28-1.** The Rate of a Bimolecular Gas-Phase Reaction Can Be Calculated Using Hard-Sphere Collision Theory and an Energy-Dependent Reaction Cross Section 1139
- 28-2. A Reaction Cross Section Depends upon the Impact Parameter 1144
- **28-3.** The Rate Constant for a Gas-Phase Chemical Reaction May Depend on the Orientations of the Colliding Molecules 1147
- 28-4. The Internal Energy of the Reactants Can Affect the Cross Section of a Reaction 1148
- 28-5. A Reactive Collision Can Be Described in a Center-of-Mass Coordinate System 1149
- **28-6.** Reactive Collisions Can Be Studied Using Crossed Molecular Beam Machines 1154
- **28-7.** The Reaction $F(g) + D_2(g) \Rightarrow DF(g) + D(g)$ Can Produce Vibrationally Excited DF(g) Molecules 1156
- **28-8.** The Velocity and Angular Distribution of the Products of a Reactive Collision Provide a Molecular Picture of the Chemical Reaction 1158
- 28-9. Not All Gas-Phase Chemical Reactions Are Rebound Reactions 1165
- **28-10.** The Potential-Energy Surface for the Reaction $F(g) + D_2(g) \Rightarrow DF(g) + D(g)$
 - Can Be Calculated Using Quantum Mechanics 1168

Problems 1171

CHAPTER 29 / Solids and Surface Chemistry 1181

29-1. The Unit Cell Is the Fundamental Building Block of a Crystal 1181

- 29-2. The Orientation of a Lattice Plane Is Described by Its Miller Indices 1181
- **29-3.** The Spacing Between Lattice Planes Can Be Determined from X-Ray Diffraction Measurements 1191
- **29-4.** The Total Scattering Intensity Is Related to the Periodic Structure of the Electron Density in the Crystal 1198
- **29-5.** The Structure Factor and the Electron Density Are Related by a Fourier Transform 1203
- **29-6.** A Gas Molecule Can Physisorb or Chemisorb to a Solid Surface 1205
- **29-7.** Isotherms Are Plots of Surface Coverage as a Function of Gas Pressure at Constant Temperature 1207
- **29-8.** The Langmuir Isotherm Can Be Used to Derive Rate Laws for Surface-Catalyzed Gas-Phase Reactions 1213
- 29-9. The Structure of a Surface is Different from That of a Bulk Solid 1217
- **29-10.** The Reaction Between H₂(g) and N₂(g) to Make NH₃(g) Can Be Surface Catalyzed 1219

Problems 1221

Answers to the Numerical Problems 1237

Illustration Credits 1257

Index 1259