Daniel Benest Claude Froeschlé (Eds.)

Impacts on Earth

Contents

Part I Origin and Dynamics of Projectiles

Catastrophic Collisions in the Asteroid Belt – The Identification of Dynamical Families	
A. Cellino and Ph. Bendjoya	3
1. Introduction	4
2. How to Identify Families	7
3. Two Independent Clustering Methods	12
3.1. The Hierarchical Clustering Method	13
	14
	15
5. The Most Recent Results	20
6. Conclusions	27
	28
Origin and Dynamical Transport of Near-Earth Asteroids and Meteorites A. Morbidelli and Ch. Froeschlé	31
1. Introduction	31
2. Geometry of Orbits	32
	34
4. Mean Motion Resonances	39
5. Transport of Planet-Crossing Objects	
by Planetary Close Encounters	43
6. Evolution Timescales and Orbital Distribution of NEAs	44
6.1. Dynamical Lifetimes	45
	48
·	50
7. Conclusions	50
References	52

Topics on Chaotic Transport for Hamiltonian Systems – Modelling of Diffusion Processes for Small Bodies in the Solar System	
C. Froeschlé and E. Lega	54
2. Stochastic Mappings in Astrodynamics 2.1. Introduction 2.2. Exogenous Stochastic Mappings 2.3. Endogenous Stochastic Mappings 2.3. Another Approach: The Synthetic Mapping 3.1. A Local Exact Fitting 3.2. A Global Fitting: The Least Square Interpolation 3.3. Preliminary Conclusions 4. Conclusion	54 55 55 56 60 61 63 64 64 65
Collisional Disruption of Natural Satellites P. Farinella	67
1. Introduction	67 68 69 70 72 74
Part II Physics of Shocks	
Concepts of Shock Waves A. Migault	79
 Shock Waves: Definition and Formation	80 80 81 82
in the Laboratory Frame $\dots \dots \dots$	82 83 84 85
of Hugoniot and Isentropic Curves in the (P, V) Plane \ldots \ldots 4.1. Comments on Conservation Laws \ldots \ldots \ldots \ldots 4.2. Position of Hugoniot Curve (H) Relatively to Isentropic Curves in the (P, V) Plane	86 86 88
in the (P, V) Plane \ldots \ldots \ldots \ldots \ldots \ldots \ldots	00

5. Experimental Results	90
5.1. Some Experimental Results on Simple Metals	90
5.2. Relation Between U_S (Shock Wave Velocity)	
and u_p (Particular Velocity)	90
5.3. Some Results on Geological Materials	94
5.4. Numerical Compendiums	94
6. Hydrodynamic Attenuation	96
6.1. Hydrodynamic Decay of Pressure Pulses	97
7. Shock Transmission Between Two Media	98
	100
	100
	101
	101
8. Planar Impact of Projectile on Semi-infinite	202
	101
	102
	103
	105
	106
	106
	107
	108
	100
* *	109
-	110
*	111
	$111 \\ 111$
References	111
The Experimental and Theoretical Basis	
for Studying Collisional Disruption in the Solar System	
· · ·	113

XI

1. Introduction	114
2. Laboratory Experiments	115
2.1. Experimental Facilities	115
2.2. The Experiments \ldots \ldots \ldots \ldots \ldots \ldots \ldots	116
3. Scaling Algorithms and Fragmentation Outcome Models	127
4. Numerical Algorithms for Calculating Collisional Outcomes	131
5. Areas for Future Work	133
References	134

Signatures of Impacts in Quartz

(Microstructures and Formation Mechanisms)	
J.C. Doukhan	137
1. Introduction	137

2. Lattice Defects Produced by Tectonic Processes	138
3. Shock-Induced Lattice Defects in Quartz	142
3.1. Mechanical Twinning \ldots \ldots \ldots \ldots \ldots \ldots	143
3.2. Planar Deformation Features	146
4. A Formation Model for PDFs	148
4.1. Amorphization \ldots	149
References	153

Part III Terrestrial Impacts

Dating of Impact Events

U. Schärer	157
1. Introduction	158
2. Some Numbers and Definitions	159
3. Geological Dating Methods	160
3.1. Crater Counting	160
3.2. Bio-magnetostratigraphy and Paleomagnetism	161
4. Nuclear Dating Methods	161
4.1. General Aspects	161
4.2. Thermoluminescence	162
4.3. Cosmogenic Nuclides	162
4.4. Fission Track Dating	163
4.5. Radioactive Decay	164
5. Shock Wave Metamorphism	167
5.1. General Aspects	167
5.2. Coherent Impact Melt Layers	169
5.3. The Crater Basement	169
5.4. Allochthonous Breccia Deposits	170
5.5. Distant Ejecta	171
6. Implications from Experiments	171
7. Dating and Sample Selection	171
7.1. Geological Frame	171
7.2. Coherent Impact Melt Layers	173
7.3. Allochthonous Breccia Deposits	173
7.4. Crater Basement	174
7.5. Distant Ejecta Deposits \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	175
8. Examples	176
8.1. Impactites of the Crater Area	176
8.2. Distant Ejecta, and the Cretaceous/Tertiary (K/T) Boundary $$.	177
8.3. Crater Basement	181
References	181

Impact Energy Flux on Earth in the Last 150 My	
as Inferred from the Cratering Record	
A.C. Bagatin, A. Montanari and P. Farinella	184
1. Introduction	185
2. The Cratering Record and Its Uncertainties	185
3. Impact Energy Flux Analysis	190
3.1. Cratering Energy Scaling	190
3.2. Energy Flux	192
3.3. Distribution of Impact Times	193
4. Discussion	
References	197

Earth-Orbiting Debris Cloud and Its Collisional Evolution

A. Rossi and P. Farinella	199
1. Introduction	200
2. The Near-Earth Environment and the Space Surveillance	201
3. Long-Term Evolution of the Debris Population	206
3.1. Source and Sink Mechanisms	207
3.2. Long-Term Evolution Model	213
4. Policy Issues and Conclusions	219
5. Post-Scriptum	221
References	222