Computational Complexity and Feasibility of Data Processing and Interval Computations

by

Vladik Kreinovich

University of Texas at El Paso, Texas, U.S.A.

Anatoly Lakeyev

Computing Center, Russian Academy of Sciences, Irkutsk, Russia

Jiří Rohn

Charles University and Academy of Sciences, Prague, Czech Republic

Patrick Kahl

IBM, Tucson, Arizona, U.S.A.

KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON

CONTENTS

PREFACE		ix
1	INFORMAL INTRODUCTION:	
	DATA PROCESSING, INTERVAL	
	COMPUTATIONS, AND COMPUTATIONAL	
	COMPLEXITY	1
2	THE NOTIONS OF FEASIBILITY AND	
	NP-HARDNESS: BRIEF INTRODUCTION	23
3	IN THE GENERAL CASE,	
	THE BASIC PROBLEM OF	
	INTERVAL COMPUTATIONS	
	IS INTRACTABLE	41
4	BASIC PROBLEM OF INTERVAL	
-	COMPUTATIONS FOR POLYNOMIALS OF	
	A FIXED NUMBER OF VARIABLES	53
5	BASIC PROBLEM OF INTERVAL	
	COMPUTATIONS FOR POLYNOMIALS OF	
	FIXED ORDER	71
6	BASIC PROBLEM OF INTERVAL	
	COMPUTATIONS FOR POLYNOMIALS	
	WITH BOUNDED COEFFICIENTS	79

7	FIXED DATA PROCESSING ALGORITHMS, VARYING DATA: STILL NP-HARD	83
8	FIXED DATA, VARYING DATA PROCESSING ALGORITHMS: STILL INTRACTABLE	85
9	WHAT IF WE ONLY ALLOW SOME ARITHMETIC OPERATIONS IN DATA PROCESSING?	87
10	FOR FRACTIONALLY-LINEAR FUNCTIONS, A FEASIBLE ALGORITHM SOLVES THE BASIC PROBLEM OF INTERVAL COMPUTATIONS	91
11	SOLVING INTERVAL LINEAR SYSTEMS IS NP-HARD	99
12	INTERVAL LINEAR SYSTEMS: SEARCH FOR FEASIBLE CLASSES	111
13	PHYSICAL COROLLARY: PREDICTION IS NOT ALWAYS POSSIBLE, EVEN FOR LINEAR SYSTEMS WITH KNOWN DYNAMICS	143
14	ENGINEERING COROLLARY: SIGNAL PROCESSING IS NP-HARD	153
15	BRIGHT SIDES OF NP-HARDNESS OF INTERVAL COMPUTATIONS I: NP-HARD MEANS THAT GOOD INTERVAL HEURISTICS CAN SOLVE OTHER HARD PROBLEMS	159

Contents

16	IF INPUT INTERVALS ARE NARROW	
	ENOUGH, THEN INTERVAL	
	COMPUTATIONS ARE ALMOST ALWAYS	
	EASY	161
17	OPTIMIZATION – A FIRST EXAMPLE OF A NUMERICAL PROBLEM IN WHICH	
	INTERVAL METHODS ARE USED:	
	COMPUTATIONAL COMPLEXITY AND	
	FEASIBILITY	173
18	SOLVING SYSTEMS OF EQUATIONS	197
19	APPROXIMATION OF INTERVAL	
	FUNCTIONS	207
20	SOLVING DIFFERENTIAL EQUATIONS	219
21	PROPERTIES OF INTERVAL MATRICES I: MAIN RESULTS	225
22	PROPERTIES OF INTERVAL MATRICES II:	
	PROOFS AND AUXILIARY RESULTS	257
23	NON-INTERVAL UNCERTAINTY I:	
	ELLIPSOID UNCERTAINTY AND ITS	
	GENERALIZATIONS	289
24	NON-INTERVAL UNCERTAINTY	
	II: MULTI-INTERVALS AND THEIR	
	GENERALIZATIONS	309
25	WHAT IF QUANTITIES ARE DISCRETE?	325
26	ERROR ESTIMATION FOR INDIRECT	
	MEASUREMENTS: INTERVAL	
	COMPUTATION PROBLEM IS	

vii

	(SLIGHTLY) HARDER THAN A SIMILAR PROBABILISTIC COMPUTATIONAL	
	PROBLEM	331
Α	IN CASE OF INTERVAL (OR MORE GENERAL) UNCERTAINTY, NO ALGORITHM CAN CHOOSE THE SIMPLEST REPRESENTATIVE	347
в	ERROR ESTIMATION FOR INDIRECT MEASUREMENTS: CASE OF APPROXIMATELY KNOWN FUNCTIONS	365
С	FROM INTERVAL COMPUTATIONS TO MODAL MATHEMATICS	381
D	BEYOND NP: TWO ROOTS GOOD, ONE ROOT BETTER	395
\mathbf{E}	DOES "NP-HARD" REALLY MEAN "INTRACTABLE"?	401
F	BRIGHT SIDES OF NP-HARDNESS OF INTERVAL COMPUTATIONS II: FREEDOM OF WILL?	405
G	THE WORSE, THE BETTER: PARADOXICAL COMPUTATIONAL COMPLEXITY OF INTERVAL COMPUTATIONS AND DATA PROCESSING	400
	COMI CIATIONS AND DATA I ROCESSING	409
RE	FERENCES	413
INDEX		451

viii