Hildegard Meyer-Ortmanns Andreas Klümper (Eds.)

Field Theoretical Tools for Polymer and Particle Physics

Springer

$\mathbf{Contents}$

Random Walks in Polymer Physics

Eri	ch Eisenriegler	1
1	Introduction	1
2	Modelling a Polymer Chain in a Good Solvent	
	and Relation to Field Theory	2
3	The Universal Scaling Behavior of a Long Polymer Chain	8
4	Polymers Interacting with Boundaries	11
5	Planar Boundary and Density–Force Relations	11
6	Spherical and Cylindrical Particles	
	and Expansion for Small Radius	14
7	Summary	20
Α	Density–Force Amplitude in $d = 2$	20
Ra	ndom Walks in Field Theory	
An	dreas Pordt	25
1	Introduction and Definition of a Bandom Walk Model	25
2	Classification of Bandom Walk Models	20
2	Euclidean Lattice Field Theory	20
1	Gaussian Model and Simple Bandom Walks	20
4	Pandom Walk Papersontation and Fuelidean Field Theory	20
6	Sumangil's Complete Polymor Representation	34 24
7	Inoqualities	26
Q	Triviality	30
0		20
Po	lymer Expansion in Particle Physics	
An	dreas Pordt	45
22)		
1	Introduction and Definitions	45
2	Examples	48
	2.1 High Temperature Expansion, Ising Model	48
	2.2 Low Temperature Expansion, Contour Expansion	49
	2.3 N-Component Lattice Field Theory	50
	2.4 Lattice Gauge Field Theory	52
	2.5 Random Walks	54

	2.6 Monomer-Dimer System, Polymer Systems	55
3	Exponential Function and Polymer Representation	55
4	Kirkwood-Salsburg and Mayer-Montroll Equations	57
5	Cluster Expansion Formula	58
6	Convergence Criteria	59
$\overline{7}$	Polymer Expansions for Green Functions and Expectation Values	60
8	Thermodynamic Limit	64
ъ		
Po	Sädenhang	60
DO	Soderberg	00
1	Introduction	68
2	Idealized Representations of Free Polymers	68
	2.1 "Realistic" Model	68
	2.2 Continuous Model	69
	2.3 Lattice Model	70
3	Interacting Walks and Spin Models	70
	3.1 Modified Walk Ensemble	70
	3.2 Relation to a Spin Model	70
4	Interacting Continuous Polymers and Field Theories	71
	4.1 Generic Interacting Polymer	71
	4.2 The Relation to a Field Theory	72
	4.3 Example 1: Contact Interaction	74
	4.4 Example 2: The Polyelectrolyte	74
5	Relation in Terms of Perturbation Theory	75
6	Conclusions	77
Re	eaction-Diffusion Mechanisms and Quantum Spin Systems	
Gu	inter M. Schütz	78
1	Charical Stackartin Many Poly Demonsion	
T	in the Quentum Hemiltonian Formalian	70
	In the Quantum Hamiltonian Formalism	70
	1.1 The Master Equation	19
	1.2 Mally-Dody Systems	85
2	1.5 Stationary States	85
2	Concerning and Domain Crowth	00
5	2.1 Clauber Dynamics for the Ising Model and the Voter Model	00
	2.2 Order/Disorder Competition: A Simple Biological Model	90 02
	2.2 Diffusion Limited Annihilation Devisited	92
1	Experimental Realizations	93
4	of Integrable Reaction Diffusion Systems	05
	A_1 Cel-Electrophoresis of DNA	05
	4.2 Kinetics of Bionolymerization	95 07
	4.3 Exciton Dynamics on Polymer Chains	91
5	Conclusions	100
0		-00

Х

Bosonization in Particle Physics Dietmar Ebert	.03
1 Introduction 1 2 NJL Model and σ Model 1 2.1 Linear σ Model 1 2.2 Nonlinear σ Model 1 3 Conclusions and Outlook 1	.03 .06 .06 .10 .12
Hadronization in Particle PhysicsDietmar Ebert1	15
1 Introduction 1 2 Hadronization of a Quark-Diquark Toy Model 1 3 Further Extensions 1 3.1 Heavy Baryons with Scalar and Axial-Vector Diquarks 1 3.2 Composite Diquarks 1	15 15 18 18 19
The Hybrid Monte Carlo Algorithmfor Quantum ChromodynamicsThomas Lippert	122
1 Introduction 1 2 Elements of Lattice QCD 1 3 Hybrid Monte Carlo 1 3.1 O(V) Algorithms for Full QCD 1 3.2 Hybrid Monte Carlo: Quenched Case 1 3.3 Including Dynamical (Wilson) Fermions 1 3.4 Numerical Integration and Improvements 1 4 Efficiency and Scaling 1	L22 L24 L26 L26 L27 L29 L30 L31
The Hybrid Monte Carlo Method for Polymer Chains	133
1 Introduction	133 134 136 136 138
Simulations of Toy Proteins Anders Irbäck	143
1 Introduction 2 The Models and the Algorithm 3 Good Folding Sequences 4 Nonrandom Hydrophobicity Patterns	$143 \\ 144 \\ 146 \\ 148$

$5 \\ 6$	Local Interactions	$\begin{array}{c} 150 \\ 152 \end{array}$
Tw Nu	o Lectures on Phase Mixing: Incleation and Symmetry Restoration	
Ma	rcelo Gleiser	155
1	Homogeneous Nucleation	155
2	Nonperturbative Corrections to Decay Rates	158
	2.1 Modeling Nonperturbative Fluctuations: Symmetry Restoration and Phase Mixing	150
	2.2 Modeling Nonperturbative Fluctuations:	109
	"Inhomogeneous" Nucleation	164
3	Matching Numerical Simulations to Continuum Field Theories	166
Ne	ural Networks and Confidence Limit Estimates	
Be	rnd A. Berg and Ion-Olimpiu Stamatescu	173
1	Views and Features of Neural Networks	173
2	The Modeling Problem for Neural Networks	175
	2.1 Architecture	176
	2.2 Functioning	177
2	Z.3 Learning	178
3 1	Multilaver Percentrons and Data Analysis	180
5	From MLP Output to Confidence Limits	186
Ŭ	5.1 Generalized Clopper–Pearson Approach	187
	5.2 Signal Probability Distributions	188
6	Conclusions	190
Tł	e Gross-Neveu Model and QCDs Chiral Phase Transition	
Th	omas Reisz	192
1	Introduction - OCD and the Chiral Phase Transition	192
18	1.1 Two-Flavour QCD	194
	1.2 Why Studying the Gross-Neveu Model?	196
2	The 3-Dimensional Gross-Neveu Model at Zero	
	and Finite Temperature	197
	2.1 The Model	197
	2.2 Many Flavours. The Large N Expansion $\ldots \ldots \ldots \ldots$	201
	2.3 Phase Structure in the $N = \infty$ Limit	205
9	2.4 what Happens for Finite IV (207
ა	3.1 A Short Survey of Dimensional Reduction	208 200
	3.2 Application to the Three-Dimensional Gross-Neveu Model	203
	at Finite Temperature	214

XII

\mathbf{v}	т	т	т	
Λ	Ŧ	T	T	

The TBA, the Gross-Neveu Model, and PolyacetyleneAlan Chodos and Hisakazu Minakata231Solitons in PolyacetyleneSiegmar Roth2401Introduction2402Conjugated Polymers2423Solitons and Conductivity2434Solitons: Optical Fingerprints2475Metal-Insulator Transition2486Particles and Antiparticles, Spin-Charge Inversion, Fractional Charges2507Polarons, Confinement2528Technical Applications of Conducting Polymers256	4 5	Phase Transition for Finite Number of Flavours N	215 218 224 226
Arian Chodos and Hisakazu Minakata 231 Solitons in Polyacetylene 240 1 Introduction 240 2 Conjugated Polymers 242 3 Solitons and Conductivity 243 4 Solitons: Optical Fingerprints 247 5 Metal-Insulator Transition 248 6 Particles and Antiparticles, Spin-Charge Inversion, Fractional Charges 250 7 Polarons, Confinement 252 8 Technical Applications of Conducting Polymers 256	Th	e TBA, the Gross-Neveu Model, and Polyacetylene	0.01
Solitons in PolyacetyleneSiegmar Roth2401Introduction2402Conjugated Polymers2423Solitons and Conductivity2434Solitons: Optical Fingerprints2475Metal-Insulator Transition2486Particles and Antiparticles, Spin-Charge Inversion, Fractional Charges2507Polarons, Confinement2528Technical Applications of Conducting Polymers256	Ala		231
Siegmar Roth2401Introduction2402Conjugated Polymers2423Solitons and Conductivity2434Solitons: Optical Fingerprints2435Metal-Insulator Transition2486Particles and Antiparticles, Spin-Charge Inversion, Fractional Charges2507Polarons, Confinement2528Technical Applications of Conducting Polymers256	Sol	itons in Polyacetylene	
1Introduction2402Conjugated Polymers2423Solitons and Conductivity2434Solitons: Optical Fingerprints2475Metal-Insulator Transition2486Particles and Antiparticles, Spin-Charge Inversion, Fractional Charges2507Polarons, Confinement2528Technical Applications of Conducting Polymers256	Sie	gmar Roth	240
2Conjugated Polymers2423Solitons and Conductivity2434Solitons: Optical Fingerprints2475Metal-Insulator Transition2486Particles and Antiparticles, Spin-Charge Inversion, Fractional Charges2507Polarons, Confinement2528Technical Applications of Conducting Polymers256	1	Introduction	240
 Solitons and Conductivity	2	Conjugated Polymers	242
 4 Solitons: Optical Fingerprints	3	Solitons and Conductivity	243
 Metal-Insulator Transition	4	Solitons: Optical Fingerprints	247
 Particles and Antiparticles, Spin-Charge Inversion, Fractional Charges	5	Metal-Insulator Transition	248
Fractional Charges2507Polarons, Confinement2528Technical Applications of Conducting Polymers256	6	Particles and Antiparticles, Spin-Charge Inversion,	
 Polarons, Confinement		Fractional Charges	250
8 Technical Applications of Conducting Polymers	7	Polarons, Confinement	252
	8	Technical Applications of Conducting Polymers	256