Modelling and Simulation of Human Behaviour in System Control

With 113 Figures

Foreword	xi
Author's Preface	xv
Acknowledgements	xix

Chapter 1. A Framework for Human-Machine Interaction Simulation

1.1 Introduction		duction	1
	1.1.1	Human-Machine System	2
	1.1.2	Models and Simulations	4
	1.1.3	Modelling Modern Working Contexts	6
1.2	Туре	es and Applications of HMI Simulation	
	1.2.1	Types of Cognitive Simulation and Types of Analysis	8
	1.2.2	Types of Application	10
1.3	Elen	nents of HMI Simulation	15
	1.3.1	Micro-Cognition, Macro-Cognition and Simulation	15
	1.3.2	Theoretical Content of HMI Simulation	18
	1.3.3	Practical Implementation of HMI Simulation	
1.4	An A	Architecture for HMI Simulation	33
	1.4.1	Interaction Model and HMI Simulation	
	1.4.2	Interaction Model and Data Management	

1.5 A D	40	
1.5.1	Taxonomies	40
1.5.2	Data and Parameters	42
1.5.3	Data and HMI Simulation Architectures	44
1.6 A F	amework for HMI Simulation	45
1.6.1	Elements of Framework	45
1.6.2	Mechanisms of Framework	47
1.7 Summary Requirements and Specifications		
1.7.1	Areas of application	50
1.7.2	Models, Simulations and Data	
1.7.3	Types of Analysis	54
1.7.4	Tables of Requirements and Specifications	55
1.7.5	Conclusions	57

Chapter 2. Engineering Methods and Cognitive Task Analysis

2.1	Intro	duction	59
2.2	Engi	neering Methods for Detection, Diagnosis and Action	60
	2.2.1	Theory of Communication	62
	2.2.2	Signal Detection and Other Monitoring Theories	63
	2.2.3	Control Theory	65
2.3	Engi	neering Methods for Planning and Decision Making	71
	2.3.1	Fuzzy Set Theory	71
	2.3.2	Qualitative-Physics Theory	76
	2.3.3	Artificial Intelligence and Expert Systems	78
2.4	Cogn	itive Task Analysis	80
	2.4.1	Scope of Cognitive Task Analysis	81
	2.4.2	Structures and Forms of Cognitive Task Analysis	82
	2.4.3	Outcomes of Cognitive Task Analysis	85

2.5	Qualitative-Physics Model for the Control of a Steam		
	erator	90	
	2.5.1	Structure of Models, Simulations and Data	90
	2.5.2	Quantitative and Qualitative-Physics Models of Physical Processes	92
	2.5.3	Quantitative and Qualitative-Physics Models of the Regulator	98
	2.5.4	Qualitative-Physics Simulation of Human Machine Interaction 1	01
2.6	Sum	mary 1	04

Chapter 3. Models and Simulations of Cognition

	3.1	Intro	duction
3.2 Review of Models of Cognition			ew of Models of Cognition 108
		3.2.1	SHEL Model
		3.2.2	Model of Human Problem Solving
		3.2.3	Step-Ladder, Skill-Rule-Knowledge Model 117
		3.2.4	Model of "Fallible Machine" 122
		3.2.5	Basic Supervisory Control Paradigm126
		3.2.6	Contextual Control Model
		3.2.7	Comparison of Cognitive Models
	3.3	Revie	ew of Simulations of Cognition142
		3.3.1	The Simulation AIDE144
		3.3.2	The Simulation CAMEO147
		3.3.3	The Simulation CES149
		3.3.4	The Simulation COSIMO154
		3.3.5	The Operator Function Modelling - OFM 156
		3.3.6	The Simulation of a Group - SYBORG 160
		3.3.7	Other Cognitive Simulations
	3.4	Guid	elines for Development of a Simulation
		3.4.1	Definition of Problem Boundaries and Aim of Simulation
		3.4.2	Cognitive Task Analysis and Field Study of Working Context 175
		3.4.3	Selection of Theoretical Model 176

xxiv Contents

	3.4.4	Selection of Numerical Algorithms and Implementation in Programming Language and Environment
3.5	An E	xample of Application
	3.5.1	Definition of Problem Boundaries and Aim of Simulation - Case Study COSIMO
	3.5.2	Cognitive Task Analysis and Field Study of Working Context - Case Study COSIMO
	3.5.3	Selection of Theoretical Model - Case Study COSIMO 179
	3.5.4	Selection of Numerical Algorithms and Implementation in Programming Language and Environment - Case Study COSIMO187
	3.5.5	Simulation of Problem Solving Situations by COSIMO 194
3.6	Sumi	mary

¥

Chapter 4. Modelling Machine and Interaction

4.1	Intro	duction
4.2	Mode	els and Simulations of Machines208
4.3	Intera	action Model
	4.3.1	Algorithms for Interaction Models
	4.3.2	The DYLAM Methodology
4.4	The (Chemical and Volume Control System Case Study 221
	4.4.1	Plant Description and Accident Scenario - Case Study CVCS 221
	4.4.2	Machine Model and Simulation - Case Study CVCS 223
	4.4.3	Human Model and Simulation - Case Study CVCS
	4.4.4	Interaction Model - Case Study CVCS
	4.4.5	Results of Case Study CVCS
4.5	The A	Auxiliary Feed-Water System Case Study
	4.5.1	Plant Description and Accident Scenario - Case Study AFWS 268
	4.5.2	Machine Model and Simulation - Case Study AFWS 276
	4.5.3	Human Model and Simulation - Case Study AFWS
	4.5.4	Interaction Model - Case Study AFWS
	4.5.5	Results of Case Study AFWS

4.6	Critical Review of Case Studies CVCS and AFWS	327			
4.7	Summary	330			
Acı	Acronyms and Abbreviations				
Ref	erences	337			
Sub	oject Index	351			
Aut	hor Index	355			