## Rolf Schönfeld

## Bewegungssteuerungen

Digitale Signalverarbeitung, Drehmomentsteuerung, Bewegungsablaufsteuerung, Simulation

Unter Mitarbeit von N.P. Quang und V. Müller

Mit 194 Abbildungen



## Inhaltsverzeichnis

| Formelzeichenverzeichnis |                                                                   | X        |
|--------------------------|-------------------------------------------------------------------|----------|
| 0                        | Einführung                                                        | 1        |
| 1                        | Digitale und analoge Signale in Bewegungssteuerungen              | 4        |
| 1.1                      | Abtastung, Zeitsynchronisation, Ereignissynchronisation digitaler |          |
|                          | Signale                                                           | 5        |
| 1.2                      | Quantisierung, Kodierung und Übertragung digitaler Signale        | 6        |
| 1.3                      | Digitale Filter                                                   | 9        |
| 1.4<br>1.5               | Analog-Digital-Wandler, Sensoren                                  | 13<br>16 |
| 2                        | Berechnung digitaler Regelschleifen                               | 24       |
| 2.1                      | Grundregelkreis                                                   | 24       |
| 2.2                      | Reglereinstellung nach dem Betragsoptimum                         | 28       |
| 2.3                      | Optimierung auf endliche Einstellzeit                             | 33       |
| 2.4                      | Diskrete Zustandsregelungen                                       | 35       |
| 3                        | Hard- und Softwarerealisierung digitaler Regler                   | 41       |
| 3.1                      | Hardwarerealisierung                                              | 41       |
| 3.1.1                    | Überblick                                                         | 41       |
| 3.1.2                    | Realisierung des Rechnerkerns                                     | 43       |
| 3.1.3                    | Realisierung der Peripherie                                       | 47       |
| 3.2                      | Softwarerealisierung                                              | 52       |
| 3.2.1                    | Vorüberlegungen zur Softwarerealisierung                          | 52       |
| 3.2.2                    | Entwicklungswerkzeuge                                             | 55       |
| 3.2.3                    | Der Weg von den Algorithmen zur Software                          | 57       |
| 4                        | Drehmomenteinprägung mit Drehfeldmaschinen                        | 70       |
| 4.1                      | Drehmomentbildung                                                 | 70       |
| 4.2                      | Vektorielle Ständerspannungseinprägung und Ständerstromregelung.  | 81       |

| VIII  | Inhaltsverzeichnis                                               |     |
|-------|------------------------------------------------------------------|-----|
| 4.3   | Stromvektorregelung und Stromzustandsregelung                    | 86  |
| 4.4   | Drehmomentsteuerung bei Rotorflußorientierung                    |     |
| 4.5   | Drehmomentsteuerung bei Statorflußorientierung                   |     |
| 4.6   | Parallelbetrieb von Asynchronmotoren am Wechselrichter           |     |
| 4.7   | Drehmomentsteuerung mit Synchron- und Reluktanzmaschinen         | 104 |
| 5     | Drehzahl- und Lageregelung des Einzelantriebs                    | 117 |
| 5.1   | Grundstruktur und Dimensionierung                                | 117 |
| 5.2   | Kompensation des Führungsfehlers                                 |     |
| 5.3   | Kompensation von Störgrößen, Reibungskompensation                |     |
| 5.4   | Steuerung der Einzelbewegung                                     |     |
| 5.5   | Drehzahl- und Lagemessung, sensorloser Betrieb                   |     |
| 5.6   | Selbsteinstellung und Selbstinbetriebnahme elektrischer Antriebe |     |
| 6     | Zustandsregelung der Einzelbewegung                              | 148 |
| 6.1   | Modelle des elektromechanischen Systems                          | 148 |
| 6.1.1 | Parametrische Modelle                                            |     |
| 6.1.2 | Nichtparametrische Modelle                                       |     |
| 6.2   | Zustandsregelung elektromechanischer Systeme                     |     |
| 6.3   | Zustandsregelung mit Beobachter                                  |     |
| 6.4   | Kennfeld - Zustandsregler                                        |     |
| 6.4.1 | Wirkprinzip                                                      |     |
| 6.4.2 | Fuzzy-Kennfeldregelung                                           |     |
| 6.4.3 | Zeitoptimale Kennfeldregler                                      |     |
| 6.5   | Selbstoptimierung und Selbstinbetriebnahme                       |     |
| 7     | Synchronisation und Gleichlauf von Bewegungen                    | 177 |
| 7.1   | Antriebsstrukturen in Be- und Verarbeitungsmaschinen             | 177 |
| 7.2   | Synchronisation der Bewegungen im System                         |     |
| 7.3   | Steuerung kontinuierlicher Fertigungsprozesse                    |     |
| 7.4   | Steuerung kontinuierlich-diskontinuierlicher Fertigungsprozesse  |     |
| 8     | Bewegungssteuerungen im Raum                                     | 198 |
| 8.1   | Robotermechanik                                                  | 198 |
| 8.2   | Zustandsregelung und nichtlineare Systementkopplung              |     |

8.3

| 9          | Steuerung von Verfahrbewegungen                            | 212 |
|------------|------------------------------------------------------------|-----|
| 9.1        | Steuerung der Einzelbewegung                               | 212 |
| 9.2        | Steuerung der Kraftübertragung Rad-Unterlage               | 214 |
| 9.3        | Parallelbetrieb von Fahrantrieben                          | 217 |
| 10         | Simulation und rechnergestützter Entwurf                   | 219 |
|            | Simulation als Entwurfshilfsmittel                         |     |
|            | Mathematische Grundlagen der Simulation                    |     |
|            | Modellbildung                                              |     |
|            | Modelle des elektrischen Systems                           |     |
|            | Rechnergestützter Entwurf                                  |     |
|            | Erprobung von Reglersoftware                               |     |
|            | Echtzeitsimulation                                         |     |
| Literatu   | rverzeichnis                                               | 257 |
| Sachwor    | tverzeichnis                                               | 273 |
| Verzeich   | nnis der Beispiele                                         |     |
| Beispiel   | 1 Berechnung der Lageregelung eines Stellantriebs          | 20  |
| Beispiel : | 2 Optimale Einstellung digitaler Regler                    | 38  |
| Beispiel : | 3 Vorbereitung einer Software-Implementierung              | 57  |
| Beispiel 4 | 4 Anlauf eines selbstgesteuerten Synchronmotors            | 109 |
| Beispiel:  | 5 Ständerstrom-Vektorregelung                              | 112 |
| Beispiel   | 6 Lageregelung mit Führungs- und Störgrößenaufschaltung    | 140 |
| Beispiel ' | 7 Adaptive und selbsteinstellende Drehzahlregelung         | 144 |
| Beispiel   | 8 Zustandsregelung eines Stellantriebs im linearen Bereich | 169 |
| Beispiel   | 9 Bewegungsvorgänge eines Positionierantriebs mit          |     |
|            | Stellgrößenbegrenzung                                      | 171 |
| Beispiel   | 10 Automatische Werkstückübergabe in einer                 |     |
|            | Zweispindeldrehmaschine                                    | 193 |
| Reisniel   | 11 Rewegung in der Ehene                                   | 206 |