Hans Dieter Baehr · Karl Stephan

Heat and Mass Transfer

Translated by Nicola Jane Park

With 327 Figures

Springer

N	Nomenclature		
1 Introduction. Technical Applications			1
	1.1	The different types of heat transfer1.1.1Heat conduction1.1.2Steady, one-dimensional conduction of heat1.1.3Convective heat transfer. Heat transfer coefficient1.1.4Determining heat transfer coefficients. Dimensionless numbers1.1.5Thermal radiation1.1.6Radiative exchange	$ \begin{array}{c} 1 \\ 2 \\ 5 \\ 10 \\ 15 \\ 25 \\ 27 \\ \end{array} $
	1.2	Overall heat transfer	30 30 32 33 37
	1.3	Heat exchangers	39 40 44 48 56 62
	1.4	The different types of mass transfer	64 66 67 70 72 76
	1.5	Mass transfer theories	79 79 83 85 87

1.6	Overa	ll mass transfer	90
1.7	Mass 1 1.7.1 1 7 2	transfer apparatus	93 94 97
1.8	Everci	ises	101
1.0	DACICI		101
2 He	at cond	luction and mass diffusion	105
2.1	The h 2.1.1 2.1.2	eat conduction equation	105 106 109
	$2.1.3 \\ 2.1.4 \\ 2.1.5$	Boundary conditions	$\begin{array}{c} 111\\ 114\\ 115 \end{array}$
2.2	Steady	y-state heat conduction	119
	2.2.1	Geometric one-dimensional heat conduction with heat sources $\ $.	119
	2.2.2	Longitudinal heat conduction in a rod	122
	2.2.3	The temperature distribution in fins and pins \ldots \ldots \ldots	127
	2.2.4	Fin efficiency	131
	2.2.3	2.2.5.1 Superposition of heat sources and heat sinks	$134 \\ 135$
		2.2.5.2 Shape factors	139
2.3	Transi	ient heat conduction	140
	2.3.1	Solution methods	141
	2.3.2	The Laplace transformation	142
	2.3.3	The semi-infinite solid	149
		2.3.3.1 Heating and cooling with different boundary conditions .	149
		2.3.3.2 Two semi-infinite bodies in contact with each other	154
		2.3.3.3 Periodic temperature variations	156
	2.3.4	Cooling or heating of simple bodies in one-dimensional heat flow .	159
		2.3.4.1 Formulation of the problem	159
		2.3.4.2 Separating the variables	101
		2.3.4.3 Results for the gylinder and the grader	102
		2.3.4.4 Results for the cylinder and the sphere	107
		in the series	169
		2.3.4.6 A solution for small times	170
	2.3.5	Cooling and heating in multi-dimensional heat flow	172
	21010	2.3.5.1 Product solutions	172
		2.3.5.2 Approximation for small Biot numbers	175
	2.3.6	Solidification of geometrically simple bodies	177
		2.3.6.1 The solidification of flat layers (Stefan problem)	178
		2.3.6.2 The quasi-steady approximation	181
		2.3.6.3 Improved approximations	184
	2.3.7	Heat sources	185

	2.3.7.1 Homogeneous heat sources	$185 \\ 187$
		101
2.4	Numerical solutions to heat conduction problems	192
	2.4.1 The simple, explicit difference method for transient heat conduction	102
	2.4.1.1 The finite difference equation	102
	$2.4.1.1$ The finite difference equation $\dots \dots \dots$	105
	$2.4.1.2$ The stability condition $\dots \dots \dots$	106
	2.4.2. Discretization of the boundary conditions	107
	2.4.2 Discretisation of the boundary conditions	202
	2.4.4 Noncartesian coordinates. Temperature dependent material prop-	202
	erties \dots	206
	2.4.4.1 The discretisation of the self-adjoint differential operator.	206
	2.4.4.2 Constant material properties. Cylindrical coordinates	207
	2.4.4.3 Temperature dependent material properties	209
	2.4.5 Transient two- and three-dimensional temperature helds	210
	2.4.0 Steady-state temperature fields	210
	temperature fields	213
	2.4.6.2 Consideration of the boundary conditions	216
0 5	Max I'm '	001
2.5	Mass diffusion	221
	2.5.1 Remarks on quescent systems	221
	2.5.2 Derivation of the differential equation for the concentration field .	224
	2.5.5 Simplifications	229
	2.5.4 Doundary conditions	230
	2.5.6 Steady-state mass diffusion with homogeneous chamical reaction	233
	2.5.0 Steady-state mass diffusion with homogeneous chemical reaction .	201
	2.5.1 Transient mass diffusion in a semi-infinite solid	241
	2.5.7.2 Transient mass diffusion in bodies of simple geometry with	211
	one-dimensional mass flow	243
2.6	Exercises	244
3 Cor	nvective heat and mass transfer. Single phase flow	251
3.1	Preliminary remarks: Longitudinal, frictionless flow over a flat plate \ldots .	251
3.2	The balance equations	256
	3.2.1 Reynolds' transport theorem	256
	3.2.2 The mass balance	258
	3.2.2.1 Pure substances	258
	3.2.2.2 Multicomponent mixtures	260
	3.2.3 The momentum balance	262
	3.2.3.1 The stress tensor	264
	3.2.3.2 Cauchy's equation of motion	268
	$3.2.3.3$ The strain tensor \ldots \ldots \ldots \ldots \ldots	269

	3.2.4	 3.2.3.4 Constitutive equations for the solution of the momentum equation	271 272 272 278 278 279 281
	3.2.5	Summary	283
3.3	Influer	nce of the Reynolds number on the flow	285
3.4	Simpli 3.4.1 3.4.2 3.4.3	fications to the Navier-Stokes equations	288 288 289 289
3.5	The be 3.5.1 3.5.2 3.5.3 3.5.4	oundary layer equations	291 291 294 298 298
3.6	Influer 3.6.1	nce of turbulence on heat and mass transfer	$\begin{array}{c} 302\\ 306 \end{array}$
3.7	Extern 3.7.1 3.7.2 3.7.3 3.7.4	nal forced flow Parallel flow along a flat plate Parallel flow along a flat plate	309 310 311 323 327 331 335
3.8	Intern 3.8.1 3.8.2 3.8.3 3.8.4 3.8.5	 al forced flow Laminar flow in circular tubes 3.8.1.1 Hydrodynamic, fully developed, laminar flow 3.8.1.2 Thermal, fully developed, laminar flow 3.8.1.3 Heat transfer coefficients in thermally fully developed, laminar flow 3.8.1.4 The thermal entry flow with fully developed velocity profile 3.8.1.5 Thermally and hydrodynamically developing flow Turbulent flow in circular tubes Packed beds Some empirical equations for heat and mass transfer in flow through channels, packed and fluidized beds 	3377 338 340 343 346 350 352 353 357 366
3.9	Free fl 3.9.1 3.9.2	ow	369 372 375

		$3.9.3 \\ 3.9.4$	Some empirical equations for heat transfer in free flow	380 382
	3.10	Overla	pping of free and forced flow	383
	3.11	Compr 3.11.1 3.11.2	essible flows	384 385 392
	3.12	Exercis	ses	395
4	Con	vective	e heat and mass transfer. Flows with phase change	401
	4.1	Heat t: 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.1.8	ransfer in condensation	$\begin{array}{r} 401 \\ 402 \\ 404 \\ 408 \\ 412 \\ 418 \\ 421 \\ 427 \\ 430 \\ 434 \\ 438 \\ 440 \end{array}$
	4.2	4.1.9 Heat t 4.2.1 4.2.2 4.2.3 4.2.4	Some empirical equations	 441 443 443 448 451 455
		$ \begin{array}{r} 4.2.7 \\ 4.2.6 \\ 4.2.7 \\ \end{array} $	Stability during boiling in free flow	456 460
		4.2.8	Two-phase flowTwo-phase flow4.2.8.1The different flow patterns4.2.8.2Flow maps4.2.8.3Some basic terms and definitions4.2.8.4Pressure drop in two-phase flow4.2.8.5The different heat transfer regions in two-phase flow4.2.8.6Heat transfer in nucleate boiling and convective evaporation4.2.8.7Critical boiling states4.2.8.8Some empirical equations for heat transfer in two-phase flow	467 467 470 471 474 481 483 486 486
	4.3	4.2.9 Exercis	Heat transfer in boiling mixtures	490 495

5	The	nal radiation 49	97
	5.1	undamentals. Physical quantities 49 1.1 Thermal radiation 49 1.2 Emission of radiation 50 5.1.2.1 Emissive power 50 5.1.2.2 Spectral intensity 50 5.1.2.3 Hemispherical spectral emissive power and total intensity 50 5.1.2.4 Diffuse radiators. Lambert's cosine law 50 1.3 Irradiation 50 1.4 Absorption of radiation 51 1.5 Reflection of radiation 51 1.6 Radiation in an enclosure. Kirchhoff's law 51	97 98 00 00 00 00 00 00 00 00 00 00 00 00 00
	5.2	adiation from a black body 52 2.1 Definition and realisation of a black body 52 2.2 The spectral intensity and the spectral emissive power 52 2.3 The emissive power and the emission of radiation in a wavelength interval 52	521 521 522 526
	5.3	adiation properties of real bodies 53 3.1 Emissivities 53 3.2 The relationships between emissivity, absorptivity and reflectivity. 53 The grey Lambert radiator 53 5.3.2.1 Conclusions from Kirchhoff's law 53 5.3.2.2 Calculation of absorptivities from emissivities 53 5.3.2.3 The grey Lambert radiator 53 3.3 Emissivities of real bodies 53 5.3.3.1 Electrical insulators 53 5.3.2.2 Electrical conductors (metals) 54	531 534 534 534 536 538 539 541 544
	5.4	olar radiation 54 .4.1 Extraterrestrial solar radiation 54 .4.2 The attenuation of solar radiation in the earth's atmosphere 55 .5.4.2.1 Spectral transmissivity 55 .5.4.2.2 Molecular and aerosol scattering 55 .5.4.2.3 Absorption 55 .4.4 Diffuse solar radiation on the ground 55 .4.4 Diffuse solar radiation and global radiation 55 .4.5 Absorptivities for solar radiation 56	548 551 552 555 556 557 559 562
	5.5	adiative exchange 56 .5.1 View factors 56 .5.2 Radiative exchange between black bodies 56 .5.3 Radiative exchange between grey Lambert radiators 57 5.5.3.1 The balance equations according to the net-radiation method 57 5.5.3.2 Radiative exchange between a radiation source, a radiation receiver and a reradiating wall 57 5.5.3.3 Radiative exchange in a hollow enclosure with two zones 57	563 564 569 572 573 574 578

	5.5.3.4 The equation system for the radiative exchange between		
	any number of zones	580	
	5.5.4 Protective radiation shields	583	
5.6	Gas radiation	587	
	5.6.1 Absorption coefficient and optical thickness	500 500	
	5.6.2 Absolutivity and emissivity	593	
	5.6.4 Emissivities and mean beam lengths of gas spaces	596	
	5.6.5 Radiative exchange in a gas filled enclosure	600	
	5.6.5.1 Black, isothermal boundary walls	600	
	5.6.5.2 Grey isothermal boundary walls	601	
	5.6.5.3 Calculation of the radiative exchange in complicated cases	604	
5.7	Exercises	605	
Appe	endix A: Supplements	609	
A.1	Introduction to tensor notation	609	
A.2	Relationship between mean and thermodynamic pressure $\ . \ . \ . \ .$	611	
A.3	Navier-Stokes equations for an incompressible fluid of constant viscosity in cartesian coordinates	612	
A.4	Navier-Stokes equations for an incompressible fluid of constant viscosity		
	in cylindrical coordinates	613	
A.5	Entropy balance for mixtures	613	
A.6	Relationship between partial and specific enthalpy	615	
A.7	Calculation of the constants a_n of a Graetz-Nusselt problem (3.243)	616	
Appe	endix B: Property data	618	
Appendix C: Solutions to the exercises 65			
Liter	Literature 6-		
Index			
mue		000	