SOFTWARE ENGINEERING
WITH JAvVA

Stephen R. Schach
Vanderbilt University

ﬁlﬁw Irwin]
fiid McGraw-Hill

Boston, Massachusetts Burr Ridge, lllinois Dubuque, lowa
Madison, Wisconsin New York, New York San Francisco, California St. Louis, Missouri

CONTENTS

Prologue 1

PART 1
Introduction to the
Software Process 3

CHAPTER 1
Scope of Software Engineering 5

1.1
1.2
1.3
1.4
1.5

Historical Aspects 6

Economic Aspects 9
Maintenance Aspects 10
Specification and Design Aspects
Team Programming Aspects 16
1.6 The Object-Oriented Paradigm 17
1.7 Terminology 22

Chapter Review 24

For Further Reading 25

Problems 26

References 27

14

CHAPTER 2
The Software Process and
Its Problems 30

Client, Developer, and User
Requirements Phase 33
221 Requirements Phase Testing 34
Specification Phase 35

2.3.1 Specification Phase Testing 36
Planning Phase 36

24.1 Planning Phase Testing 37
Design Phase 38

2.5.1 Design Phase Testing 39
Implementation Phase 39

2.6.1 Implementation Phase Testing 39
Integration Phase 40

2.7.1 Integration Phase Testing 40
Maintenance Phase 41

2.8.1 Maintenance Phase Testing 42

2.1
2.2

32

2.3

2.4

2.5

2.6

2.7

2.8

2.9 Retirement 42
2.10 Problems with Software Production:
Essence and Accidents 43

2.10.1 Complexity 44
2.10.2 Conformity 46
2.10.3 Changeability 47
2.10.4 Invisibility 48
2.10.5 No Silver Bullet? 49

Chapter Review 50
For Further Reading 50
Problems 51
References 52

CHAPTER 3

Software Life-Cycle Models 53
3.1 Build-and-Fix Model 53
3.2 Waterfall Model 54
3.2.1 Analysis of the Waterfall Model
3.3 Rapid Prototyping Model 59
3.3.1 Integrating the Waterfall and Rapid
Prototyping Models 61
3.4 Incremental Model 61
3.4.1 Analysis of the Incremental
Model 63
3.5 Spiral Model 66
3.5.1 Analysis of the Spiral Model 70
3.6 Comparison of Life-Cycle Models 71
3.7 Capability Maturity Model 71
3.8 1ISO 9000 75

Chapter Review 76
For Further Reading 77
Problems 78
References 78

CHAPTER 4
Stepwise Refinement, CASE, and

Other Tools of the Trade 82
4.1 Stepwise Refinement 82

4.1.1 Stepwise Refinement Example 83

57

xviii CONTENTS

4.2 Cost-Benefit Analysis 89
4.3 CASE (Computer-Aided Software
Engineering) 90
4.3.1 Taxonomy of CASE 90
4.4 Scope of CASE 92
4.5 Software Versions 96
4.5.1 Revisions 96
452 Variations 97
4.6 Configuration Control 98
4.6.1 Configuration Control during Product
Maintenance 100
4.6.2 Baselines 101
4.6.3 Configuration Control during Product
Development 101
4.7 Build Tools 102
4.8 Productivity Gains with CASE
Technology 103
4.9 Software Metrics 103
Chapter Review 105
For Further Reading 105
Problems 106
References 108

CHAPTER 5
Testing Principles 110

5.1 Quality Issues 111
5.1.1 Software Quality Assurance 111
5.12 Managerial Independence 112
5.2 Nonexecution-Based Testing 113
5.2.1 Walkthroughs 113
522 Managing Walkthroughs 114
5.2.3 Inspections 115
524 Comparison of Inspections and
Walkthroughs 117
5.2.5 Metrics for Inspections 118
5.3 Execution-Based Testing 118
5.4 What Should Be Tested? 119
5.4.1 Utility 120
54.2 Reliability 120
543 Robustness 121
544 Performance 121
545 Correctness 122
5.5 TTesting versus Correctness Proofs 124
5.5.1 Example of a Correctness Proof 124
552 Correctness Proof Case Study 128

553 Correctness Proofs and Software
Engineering 129

5.6 'Who Should Perform Execution-Based
Testing? 131

5.7 When Testing Stops 133

Chapter Review 134

For Further Reading 134

Problems 135

References 137

CHAPTER 6
Introduction to Objects 140

6.1 What Is a Module? 140
6.2 Cohesion 144
6.2.1 Coincidental Cohesion 145
6.2.2 Logical Cohesion 145
6.2.3 Temporal Cohesion 146
6.2.4 Procedural Cohesion 147
6.2.5 Communicational Cohesion 148
6.2.6 Informational Cohesion 148
6.2.7 Functional Cohesion 149
6.2.8 Cohesion Example 150
6.3 Coupling 151
6.3.1 Content Coupling 151
6.3.2 Common Coupling 151
6.3.3 Control Coupling 154
6.3.4 Stamp Coupling 154
6.3.5 Data Coupling 155
6.3.6 Coupling Example 156
6.4 Data Encapsulation 157
6.4.1 Data Encapsulation and Product
Development 161
6.4.2 Data Encapsulation and Product
Maintenance 163
6.5 Abstract Data Types 166
6.6 Information Hiding 168
6.7 Objects 171
6.8 Polymorphism and Dynamic Binding 175
6.9 Cohesion and Coupling of Objects 177
6.10 Reuse 178
6.10.1 Impediments to Reuse 179
6.11 Reuse Case Studies 180
6.11.1 Raytheon Missile Systems
Division 180
6.11.2 Toshiba Software Factory 182
6.11.3 NASA Software 183

6.11.4 GTE Data Services 184
6.11.5 Hewlett-Packard 184
6.12 Reuse and Maintenance 185
6.13 Objects and Productivity 186
Chapter Review 188
For Further Reading 188
Problems 189
References 191

PART 2

The Phases of the
Software Process 195

CHAPTER 7
Requirements Phase 197

7.1 Requirements Analysis Techniques 198

7.2 Rapid Prototyping 199

7.3 Human Factors 201

7.4 Rapid Prototyping as a Specification
Technique 203

7.5 Reusing the Rapid Prototype 205

7.6 Other Uses of Rapid Prototyping 207

7.7 Management Implications of the Rapid
Prototyping Model 208

7.8 Experiences with Rapid Prototyping 209

7.9 Joint Application Design 211

7.10 Comparison of Requirements Analysis
Techniques 211

7.11 Testing during the Requirements Phase 212

7.12 CASE Tools for the Requirements
Phase 212

7.13 Metrics for the Requirements Phase 213

7.14 MSG Case Study: Requirements Phase 214

7.15 MSG Case Study: Rapid Prototype 216

Chapter Review 217

For Further Reading 218

Problems 219

References 220

CHAPTER 8
Specification Phase 222

8.1 The Specification Document 222

CONTENTS xix

8.2 Informal Specifications 224
8.2.1 Case Study: Text Processing 225
8.3 Structured Systems Analysis 226
8.3.1 Sally’s Software Shop 226
8.4 Other Semiformal Techniques 234
8.5 Entity-Relationship Modeling 235
8.6 Finite State Machines 237
8.6.1 Elevator Problem: Finite State
Machines 239
8.7 Petri Nets 244
8.7.1 Elevator Problem: Petri Nets 247
8.8 Z 250
8.8.1 Elevator Problem: Z 251
8.8.2 Analysis of Z 253
8.9 Other Formal Techniques 255
8.10 Comparison of Specification
Techniques 256
8.11 Testing during the Specification Phase 256
8.12 CASE Tools for the Specification
Phase 257
8.13 Metrics for the Specification Phase 258
8.14 MSG Case Study: Structured Systems
Analysis 258
Chapter Review 260
For Further Reading 261
Problems 262
References 264

CHAPTER 9
Object-Oriented
Analysis Phase 268

9.1 Object-Oriented versus Structured
Paradigm 268

9.2 Object-Oriented Analysis 270

9.3 Elevator Problem: Object-Oriented
Analysis 272
9.3.1 Class Modeling 272
9.3.2 Dynamic Modeling 275
933 Functional Modeling 278

9.4 Object-Oriented Life-Cycle Models 280

9.5 CASE Tools for the Object-Oriented
Analysis Phase 282

9.6 MSG Case Study: Object-Oriented
Analysis 283

XX CONTENTS

Chapter Review 286
For Further Reading 286
Problems 288
References 289

CHAPTER 10
Planning Phase 291

10.1 Estimating Duration and Cost 291
10.1.1 Metrics for the Size of a
Product 293
10.1.2 Techniques of Cost Estimation 297
10.1.3 Intermediate COCOMO 299
10.1.4 Tracking Duration and Cost
Estimates 303
10.2 Components of a Software Project
Management Plan 303
10.3 Software Project Management Plan
Framework 305
10.4 IEEE Software Project Management
Plan 305
10.5 Planning of Testing 308
10.6 Planning of Object-Oriented Projects 310
10.7 Training Requirements 310
10.8 Documentation Standards 311
10.9 CASE Tools for the Planning Phase 312
10.10 Testing during the Planning Phase 315
10.11 MSG Case Study: Planning Phase 315
Chapter Review 315
For Further Reading 316
Problems 317
References 318

CHAPTER 11
Design Phase 322

11.1 Design and Abstraction 322

[1.2 Action-Oriented Design 324

11.3 Data Flow Analysis 324
11.3.1 Data Flow Analysis Example 325
11.3.2 Extensions 329

11.4 Transaction Analysis 329

11.5 Data-Oriented Design 332

11.6 Jackson System Development 333
11.6.1 Overview of Jackson System

Development 333

11.6.2 Why Jackson System Development
Is Presented in This Chapter 335
11.6.3 Elevator Problem: Jackson System
Development 336
11.6.4 Analysis of Jackson System
Development 344
11.7 Techniques of Jackson, Warnier, and
Orr 345
11.8 Object-Oriented Design 346
11.8.1 Elevator Problem: Object-Oriented
Design 347
11.9 Detailed Design 350
11.10 Comparison of Action-, Data-, and
Object-Oriented Design 352
11.11 Difficulties Associated with Real-Time
Systems 353
11.12 Real-Time Design Techniques 354
11.13 Testing during the Design Phase 355
11.14 CASE Tools for the Design Phase 356
11.15 Metrics for the Design Phase 357
11.16 MSG Case Study: Object-Oriented
Design 358
Chapter Review 359
For Further Reading 361
Problems 363
References 364

CHAPTER 12
Implementation Phase 368

12.1 Choice of Programming Language 368
12.2 Fourth Generation Languages 372
12.3 Structured Programming 375
12.3.1 History of Structured
Programming 375
12.3.2 Why the goto Statement Is
Considered Harmful 377
12.4 Good Programming Practice 378
12.5 Coding Standards 383
12.6 Team Organization 385
12.7 Democratic Team Approach 387
12.7.1 Analysis of the Democratic Team
Approach 388
12.8 Classical Chief Programmer Team
Approach 388
12.8.1 The New York Times Project 390

129

12.10

12.11
12.12

12.13
12.14

12.15

12.16

12.17
12.18

12.19
12.20
12.21

12.22
12.23
12.24

12.8.2 Impracticality of the Classical Chief
Programmer Team Approach 391

Beyond Chief Programmer and

Democratic Teams 392

Portability 396

12.10.1 Hardware Incompatibilities 396

12.10.2 Operating System
Incompatibilities 398

12.10.3 Numerical Software
Incompatibilities 398

12.10.4 Compiler Incompatibilities 399

Why Portability? 402

Techniques for Achieving Portability 404

12.12.1 Portable System Software 404

12.12.2 Portable Application Software 405

12.12.3 Portable Data 406

Module Reuse 407

Module Test Case Selection 407

12.14.1 Testing to Specifications versus
Testing to Code 408

12.14.2 Feasibility of Testing to
Specifications 408

12.14.3 Feasibility of Testing to Code 409

Black-Box Module-Testing

Techniques 411

12.15.1 Equivalence Testing and Boundary
Value Analysis 411

12.15.2 Functional Testing 413

Glass-Box Module-Testing

Techniques 414

12.16.1 Structural Testing: Statement,
Branch, and Path Coverage 414

12.16.2 Complexity Metrics 415

Code Walkthroughs and Inspections 418

Comparison of Module-Testing

Techniques 418

Cleanroom 419

Testing Objects 420

Management Aspects of Module-

Testing 423

12.21.1 When to Rewrite Rather Than
Debug a Module 424

Testing Distributed Software 425

Testing Real-Time Software 427

CASE Tools for the Implementation

Phase 429

CONTENTS xxi

12.25 MSG Case Study: Black-Box Test
Cases 429

Chapter Review 431
For Further Reading 431
Problems 433
References 435

CHAPTER 13
Implementation and
Integration Phase 441

13.1 Implementation and Integration 441
13.1.1 Top-Down Implementation and
Integration 442
13.1.2 Bottom-Up Implementation and
Integration 444
13.1.3 Sandwich Implementation and
Integration 445
13.1.4 Implementation and Integration of
Object-Oriented Products 446
13.1.5 Management Issues during the
Implementation and Integration
Phase 446
13.2 Testing during the Implementation and
Integration Phase 447
13.3 Integration Testing of Graphical User
Interfaces 447
13.4 Product Testing 448
13.5 Acceptance Testing 449
13.6 CASE Tools for the Implementation and
Integration Phase 450
13.7 CASE Tools for the Complete Software
Process 451
13.8 Language-Centered Environments 451
13.9 Structure-Oriented Environments 452
13.10 Toolkit Environments 452
13.11 Integrated Environments 452
13.11.1 Process Integration 453
13.11.2 Tool Integration 454
13.11.3 Other Forms of Integration 456
13.12 Environments for Business
Applications 456
13.13 Public Tool Infrastructures 457
13.14 Comparison of Environment Types 458
13.15 Metrics for the Implementation and
Integration Phase 458

xxii CONTENTS

13.16 MSG Case Study: Implementation and
Integration Phase 459

Chapter Review 460

For Further Reading 460

Problems 461

References 462

CHAPTER 14
Maintenance Phase 465

14.1 Why Maintenance Is Necessary 465

14.2 What Is Required of Maintenance
Programmers 466

14.3 Maintenance Case Study 468

14.4 Management of Maintenance 470
14.4.1 Fault Reports 470
14.4.2 Authorizing Changes to the

Product 471
14.4.3 Ensuring Maintainability 472
1444 Problem of Repeated
Maintenance 472

14.5 Maintenance of Object-Oriented
Software 473

14.6 Maintenance Skills versus Development
Skills 476

14.7 Reverse Engineering 476

14.8 Testing during the Maintenance
Phase 477

14.9 CASE Tools for the Maintenance
Phase 478

14.10 Metrics for the Maintenance Phase 479

Chapter Review 479

For Further Reading 480

Problems 480

References 481

Epilogue 483

Appendices

APPENDIX A
Osbert Oglesby—Art Dealer 491

APPENDIX B
Software
Engineering Resources 494

APPENDIX C
MSG Case Study:
Rapid Prototype 496

APPENDIX D
MSG Case Study: Structured
Systems Analysis 509

APPENDIX E
MSG Case Study:
Object-Oriented Analysis 513

APPENDIX F
MSG Case Study: Software Project
Management Plan 514

APPENDIX G
MSG Case Study: Design 519

APPENDIX H
MSG Case Study: Black-Box
Test Cases 539

APPENDIX 1
MSG Case Study: Source
Code 542

Bibliography 581
Author Index 605

Subject Index 608

