K.-E. Peiponen E.M. Vartiainen T. Asakura

Dispersion, Complex Analysis and Optical Spectroscopy

Classical Theory

With 46 Figures

Contents

1.	Cla	ssical Dispersion Theory	1
	1.1	Equation of Motion	1
	1.2	Maxwell's Equations and Medium Properties	3
	1.3	Lorentz and Drude Models for Linear Susceptibility	4
	1.4	Wave Equation and the Complex Refractive Index	8
	1.5	Complex Reflectivity	10
2.	Dis	persion Relations in Linear Optics	17
	2.1	Causality	17
	2.2	Hilbert Transforms	21
	2.3	Kramers–Kronig Relations in Transmission Spectroscopy	25
	2.4	Multiply-Subtractive Kramers–Kronig Relations	29
	2.5	Imaginary Angular Frequencies	31
	2.6	Kramers–Kronig Relations in Reflection Spectroscopy	34
	2.7	Kramers–Kronig Relations for the Effective Optical	
		Constants of Two-Phase Nanocomposites	39
	2.8	Dispersion Relations in Magneto-Optics	42
3.	Dis	persion Relations in Nonlinear Optics	47
	3.1	Hyperpolarizability	47
	3.2	Anharmonic Lorentz Oscillator Model	49
	3.3	Nonlinear Susceptibilities and Causality	52
	3.4	Dispersion Relations for Holomorphic Nonlinear Susceptibilities	52
	3.5	Examples of Meromorphic Nonlinear and Total Susceptibilities	55
	3.6	Dispersion Theory of Meromorphic Susceptibilities	58
4.	Cor	nformal Mappings in Analysis of Optical Spectra	61
	4.1	Conformal Mappings	61
	4.2	Laurent Series Expansion of Complex Refractive Index	
		in Unit Disk	63
	4.3	Phase Retrieval Using Laurent Series Expansion	
		of the Complex Derivative of Normal Reflectance	66
	4.4	Conformal Mapping in Description	
		of Oblique-Angle Reflectivity	68

	$4.5 \\ 4.6$	Conformal Mapping of Nonlinear Susceptibilities		
		of Nonlinear Susceptibility		
5.	Max	cimum Entropy Method		
	5.1	Maximum Entropy Model		
	5.2	Phase Retrieval Procedure		
	5.3	Applications in Reflection Spectroscopy		
	5.4	Applications in Nonlinear Optical Spectroscopy		
6.	Sum Rules			
	6.1	$f\mathchar`-Sum Rule and Average-Optical Constant Sum Rules \ldots \ldots 97$		
	6.2	Sum Rules for the Powers of the Complex Refractive Index 100 $$		
	6.3	Sum Rules for the Powers of the Complex Reflectivity 102		
	6.4	Sum Rules in Magneto-Optics 106		
	6.5	Sum Rules in Nonlinear Optics 107		
	6.6	Poles and Zeros of Meromorphic Susceptibility 111		
Appendices				
	А	Cauchy's Integral Theorem 113		
	В	Theorem of Residues 113		
	\mathbf{C}	Jordan's Lemma		
	D	Phase Retrieval for Oblique-Angle Reflectance: s-Polarization 115		
	\mathbf{E}	Complex Analysis with Several Variables 116		
	F	Surface Integral of Generalized Cauchy Formula 117		
	G	Derivation of (4.40) 119		
	Η	Derivation of (5.21) 120		
	Ι	Superconvergence Theorem [33] 122		
References				
Index				