T. Inui Y. Tanabe Y. Onodera

Group Theory and Its Applications in Physics

With 72 Figures

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona

ħ.,

Contents

Sections marked with an asterisk may be omitted on a first reading.

1.	Sym	metry and the Role of Group Theory	1		
	1.1	Arrangement of the Book	5		
2.	2. Groups				
	2.1	Definition of a Group	7		
		2.1.1 Multiplication Tables	8		
		2.1.2 Generating Elements	8		
	:	*2.1.3 Commutative Groups	9		
	2.2	Covering Operations of Regular Polygons	10		
	2.3	Permutations and the Symmetric Group	15		
	2.4	The Rearrangement Theorem	17		
	2.5	Isomorphism and Homomorphism	18		
		2.5.1 Isomorphism	18		
		2.5.2 Homomorphism	1 9		
		2.5.3 Note on Mapping	19		
	2.6	Subgroups	20		
	*2.7	Cosets and Coset Decomposition	20		
	2.8	Conjugate Elements; Classes	21		
	*2.9	Multiplication of Classes	23		
	*2.10	Invariant Subgroups	25		
	*2.11	The Factor Group	26		
	:	*2.11.1 The Kernel	28		
	:	*2.11.2 Homomorphism Theorem	28		
	2.12	The Direct-Product Group	28		
3	Vect	tor Snaces	30		
5.	3 1	Vectors and Vector Snaces	30		
	5.1	*3.1.1 Mathematical Definition of a Vector Space	30		
		3.1.2 Basis of a Vector Space	31		
	32	Transformation of Vectors	32		
	3.3	Subspaces and Invariant Subspaces	36		
	3.4	Metric Vector Spaces	38		
		3.4.1 Inner Product of Vectors	38		
		3.4.2 Orthonormal Basis	38		
		3.4.3 Unitary Operators and Unitary Matrices	39		
		3.4.4 Hermitian Operators and Hermitian Matrices	40		
	3.5	Eigenvalue Problems of Hermitian and Unitary Operators	40		
	*3.6	Linear Transformation Groups	42		

h.,

4. Rep	resentations of a Group I	44
4.1	Representations	44
	4.1.1 Basis for a Representation	46
	4.1.2 Equivalence of Representations	47
	4.1.3 Reducible and Irreducible Representations	47
4.2	Irreducible Representations of the Group $C_{\infty v}$	48
4.3	Effect of Symmetry Transformation Operators	
	on Functions	51
4.4	Representations of the Group C_{3v}	
	Based on Homogeneous Polynomials	54
4.5	General Representation Theory	57
	4.5.1 Unitarization of a Representation	57
	4.5.2 Schur's First Lemma	58
	4.5.3 Schur's Second Lemma	58
	4.5.4 The Great Orthogonality Theorem	58
4.6	Characters	61
	4.6.1 First and Second Orthogonalities of Characters	62
4.7	Reduction of Reducible Representations	63
	4.7.1 Restriction to a Subgroup	65
4.8	Product Representations	65
	4.8.1 Symmetric and Antisymmetric Product	
	Representations	67
4.9	Representations of a Direct-Product Group	69
*4.10	The Regular Representation	70
*4.11	Construction of Character Tables	71
*4.12	Adjoint Representations	73
*4.13	Proofs of the Theorems on Group Representations	77
	*4.13.1 Unitarization of a Representation	77
	*4.13.2 Schur's First Lemma	78
	*4.13.3 Schur's Second Lemma	79
	*4.13.4 Second Orthogonality of Characters	79
5. Rep	resentations of a Group II	82
*5.1	Induced Representations	82
*5.2	Irreducible Representations	
•	of a Group with an Invariant Subgroup	84
*5.3	Irreducible Representations of Little Groups	
2.0	or Small Representations	87
*5.4	Ray Representations	90
*55	Construction of Matrices	
5.5	of Irreducible Ray Representations	95
6. Gro	oup Representations in Quantum Mechanics	102
6.1	Symmetry Transformations of Wavefunctions	
	and Quantum-Mechanical Operators	102
6.2	Eigenstates of the Hamiltonian and Irreducibility	103

- Fal

	6.3	Splitting of Energy Levels by a Perturbation	107
	6.4	Orthogonality of Basis Functions	108
	6.5	Selection Rules	1 09
		*6.5.1 Derivation of the Selection Rule	
		for Diagonal Matrix Elements	111
	6.6	Projection Operators	112
7.	The	Rotation Group	115
	7.1	Rotations	115
	7.2	Rotation and Euler Angles	117
	7.3	Rotations as Operators; Infinitesimal Rotations	119
	7.4	Representation of Infinitesimal Rotations	121
		7.4.1 Rotation of Spin Functions	124
	7.5	Representations of the Rotation Group	125
	7.6	SU(2), SO(3) and O(3)	129
	7.7	Basis of Representations	130
	78	Spherical Harmonics	132
	79	Orthogonality of Representation Matrices	102
		and Characters	134
		7.9.1 Completeness Relation for $\chi^{J}(\omega)$	136
	7 10	Wigner Coefficients	137
	7.10	Tensor Operators	142
	7.11		142
	7.12	Addition of Three Angular Momenta:	149
	1.13	Addition of Three Angular Momenta;	454
		Racan Coefficients	151
	7.14	Electronic wavefunctions for the Configuration $(nl)^{r}$	158
	7.15	Electrons and Holes	163
	7.16	Evaluation of the Matrix Elements of Operators	166
0	Doir	t Cround	160
0.	Q 1	Symmetry Operations in Point Groups	160
	0.1	Point Groups and Their Notation	171
	0.2	Class Structure in Daint Crowns	171
	8.3	Class Structure in Point Groups	1/3
	8.4	De la Valada de Constantions of Point Groups	175
	8.5	Double-valued Representations and Double Groups	1/6
	8.6	Transformation of Spin and Orbital Functions	179
:	*8.7	Constructive Derivation of Point Groups Consisting	
		of Proper Rotations	17 9
0	Floo	tranic States of Malecules	197
۶.	91	Molecular Orbitale	182
	0.7	Distomic Molecules: ICAO Method	103
	7.4 0.2	Construction of LCAO MO: The - Electron Approximation	103
	7.3	construction of LCAO-ivio. The π -Electron Approximation for the Bongone Molecula	100
		101 the Delizene Molecule	109
	• •	TY.5.1 Further Methods for Determining the Basis Sets	192
	9.4	I ne Benzene Molecule (Continued)	193

h.,

XII Contents

	9.5	Hybridized Orbitals	195
		9.5.1 Methane and sp^3 -Hybridization	196
	9.6	Ligand Field Theory	198
	9.7	Multiplet Terms in Molecules	204
	*9.8	Clebsch–Gordan Coefficients for Simply Reducible Groups	
		and the Wigner-Eckart Theorem	212
10	Molec	rular Vibrations	220
10	10 1	Normal Modes and Normal Coordinates	220
	10.2	Group Theory and Normal Modes	222
	10.3	Selection Rules for Infrared Absorption	
	1012	and Raman Scattering	227
	10.4	Interaction of Electrons with Atomic Displacements	228
	,	*10.4.1 Kramers Degeneracy	232
	G		22 4
11	. Space		234
	11.1	Iranslational Symmetry of Crystals	234
	11.2	Symmetry Operations in Space Groups	233
	11.3	Broucie Letting	237
	11.4	Nomenelature of Space Crowns	239
	11.5	The Designment Lettice and the Brillowin Zone	242
	11.0	Ine Recipiocal Lattice and the Billiouni Zone	243
	11./	The Crown of the Waynester k	240
	11.0	and Its Irreducible Depresentations	248
	11.0	Irreducible Representations of a Space Group	240
	11.9	Double Space Groups	255
	11.10		250
12	. Electi	onic States in Crystals	259
	12.1	Bloch Functions and $E(k)$ Spectra	259
	12.2	Examples of Energy Bands: Ge and TlBr	260
	12.3	Compatibility or Connectivity Relations	264
	12.4	Bloch Functions Expressed in Terms of Plane Waves	264
	12.5	Choice of the Origin	267
		12.5.1 Effect of the Choice on Bloch Wavefunctions	268
	12.6	Bloch Functions Expressed in Terms of Atomic Orbitals	269
	12.7	Lattice Vibrations	271
	12.8	The Spin-Orbit Interaction and Double Space Groups	273
	12.9	Scattering of an Electron by Lattice Vibrations	274
	12.10	Interband Optical Transitions	276
	12.11	Frenkel Excitons in Molecular Crystals	278
	*12.12	Selection Rules in Space Groups	283
		12.12.1 Symmetric and Antisymmetric	
		Product Representations	289

(A)

13. Time Reversal and Nonunitary Groups	291
13.1 Time Reversal	291
13.2 Nonunitary Groups and Corepresentations	294
13.3 Criteria for Space Groups and Examples	300
13.4 Magnetic Space Groups	306
13.5 Excitons in Magnetic Compounds; Spin Waves	308
*13.5.1 Symmetry of the Hamiltonian	314
14. Landau's Theory of Phase Transitions	316
14.1 Landau's Theory of Second-Order Phase Transitions	316
14.2 Crystal Structures and Spin Alignments	324
*14.3 Derivation of the Lifshitz Criterion	329
*14.3.1 Lifshitz's Derivation of the Lifshitz Criterion	332
15. The Symmetric Group	333
15.1 The Symmetric Group (Permutation Group)	333
15.2 Irreducible Characters	335
15.3 Construction of Irreducible Representation Matrices	337
15.4 The Basis for Irreducible Representations	340
15.5 The Unitary Group and the Symmetric Group	342
15.6 The Branching Rule	349
15.7 Wavefunctions for the Configuration $(nl)^x$	352
*15.8 $D^{(J)}$ as Irreducible Representations of SU(2)	355
*15.9 Irreducible Representations of $U(m)$	358
Appendices	360
A. The Thirty-Two Crystallographic Point Groups	360
B. Character Tables for Point Groups	363
Answers and Hints to the Exercises	374
Motifs of the Family Crests	389
References	39 1
Subject Index	393