Heinz-Ulrich Seidel Edwin Wagner

Allgemeine Elektrotechnik

Band 1

2. Auflage

Carl Hanser Verlag München Wien

Inhaltsverzeichnis

V	orwo	rt		V
1	Vor	gänge	in elektrischen Netzwerken bei Gleichstrom	1
			dbegriffe und Grundgesetze	1
		1.1.1	Die elektrische Ladung Q	1
		1.1.2	Die bewegte elektrische Ladung, der elektrische Strom	4
			Kräfte auf Ladungen, elektrische Spannung und elektrische Feldstärke .	10
		1.1.4	Widerstand und Leitwert, das passive Element	15
		1.1.5	Spannungs- und Stromquelle, das aktive Element	21
		1.1.6	Die elektrische Leistung	24
		1.1.7	Der Grundstromkreis	25
	1.2	Berec	chnungsmethoden elektrischer Gleichstromkreise	28
		1.2.1	Die Anwendung der Kirchhoffschen Sätze zur Netzwerkberechnung	28
		1.2.2	Das Superpositionsprinzip	33
		1.2.3	Grundbegriffe der Zweipoltheorie	36
		1.2.4	Die Zusammenschaltung linearer passiver Zweipole	37
		1.2.5	Die Zusammenschaltung linearer aktiver Zweipole	46
		1.2.6	Die Ermittlung der Strom-Spannungskennlinie nichtlinearer Zweipole	50
		1.2.7	Die Anwendung der Zweipoltheorie zur Netzwerkberechnung	52
		1.2.8	Die Methode der Knotenspannungsanalyse	56
		1.2.9	Die Methode der Maschenstromanalyse	62
	1.3		rothermische Energiewandlungsvorgänge in Gleichstromkreisen	65
			Die Grundgesetze der Erwärmung und des Wärmeaustauschs	65
		1.3.2	Erwärmungs- und Abkühlungsvorgang	70
		1.3.3	Berechnung von Endtemperaturen für Erwärmungsvorgänge	73
2	Elel	ktrisch	e Erscheinungen in räumlichen Leitern und Nichtleitern	78
	2.1	Die I	Darstellung des elektrischen Feldes durch ein Skalarfeld, das Potential	78
	2.2	Das s	stationäre elektrische Strömungsfeld	82
		2.2.1	Die Grundgleichungen des stationären Strömungsfeldes	82
		2.2.2	Die Berechnung symmetrischer Felder in homogenen Medien	83
		2.2.3	Grenzflächen zweier verschieden leitfähiger Medien	86
		2.2.4	Der Leistungsumsatz im stationären Strömungsfeld	89

	2.5	Das	tiekurostatische Feid, eiekurische Erschemungen in Nichtettern	90
		2.3.1	Grundgleichungen	90
		2.3.2	Berechnung einfacher rotations- und zylindersymmetrischer elektrostatisch	er
			Felder	94
		2.3.3	Die Beziehungen an Grenzflächen verschiedener Medien	96
		2.3.4	Energien und Kräfte im elektrostatischen Feld	98
		2.3.5	Die Berechnung der Kapazität technisch üblicher Kondensatoren	109
		2.3.6	Reihen- und Parallelschaltung von Kondensatoren	112
	2.4	Vorgä	inge bei zeitlichen Änderungen der Feldgrößen im Nichtleiter, Verschiebung	s-
		strom		115
		2.4.1	Der Begriff des Verschiebungsstromes	115
		2.4.2	Die Aufladung eines Kondensators	117
			Die Entladung eines Kondensators	121
		2.4.4	Die Berechnung von Ausgleichsvorgängen in beliebigen linearen Schaltu	
			gen mit einer Kapazität und konstanter Erregung	123
3		-	the Feldanordnungen, technischer Magnetkreis	127
	3.1		wirkungen, Magnetflußdichte B, Magnetfluß Φ	127
			Magnetisches Feld als Raumzustand mit Kraftwirkungen	127
		3.1.2	Charakterisierung des Raumzustandes durch den Magnetfluß Φ	128
		3.1.3	Lorentzkraft, Definitionsgleichung für die magnetische Flußdichte B .	129
		3.1.4	Zusammenhang Magnetflußdichte B, Magnetfluß Φ	130
		3.1.5	Messung der Magnetflußdichte B	131
			Ampèresches Kraftgesetz	132
		3.1.7	Gesetz von Biot und Savart	136
	3.2	Durc	hflutungsgesetz, magnetische Feldstärke H und magnetische Spannung V	139
		3.2.1	Umlaufintegral der magnetischen Flußdichte im Feld von Leiteranordnu	
			gen	139
			Durchflutungsgesetz	144
			Magnetische Feldstärke H, magnetische Spannung V	145
			Durchflutungsgesetz in vollständiger Form	146
		3.2.5	Beispiele zur Berechnung der magnetischen Feldstärke	148
	3.3	Stoff	e im Magnetfeld	160
		3.3.1	Dia-, Para- und Ferromagnetismus	161
		3.3.2	Materialgleichung	163
			Magnetisierungskennlinien ferromagnetischer Stoffe	164
		3.3.4	Verhalten der Feldgrößen an Grenzflächen	167

Inhaltsverzeichnis IX

	3.4	Berec	chnung technischer Magnetkreise	169			
		3.4.1	Beschreibung des technischen Magnetkreises	169			
		3.4.2	Analyse einfacher Magnetkreisanordnungen	175			
		3.4.3	Magnetkreise mit Dauermagnetkern	188			
	3.5	Elekt	romagnetische Induktion	192			
		3.5.1	Beobachtungen	192			
		3.5.2	Feldkräfte im Koordinatensystem	193			
		3.5.3	Bewegungsinduktion	196			
		3.5.4	Ruheinduktion	203			
		3.5.5	Induktionsgesetz in allgemeiner Form	209			
	3.6	Selbs	tinduktion, Induktivität L	210			
		3.6.1	Selbstinduktionsspannung	210			
		3.6.2	Ψ-I-Kennlinien und magnetische Feldenergie	211			
		3.6.3	Induktivität in der Schaltung	215			
		3.6.4	Berechnung der Induktivität von Leiteranordnungen	220			
		3.6.5	Energiedichte des magnetischen Feldes	226			
	3.7	Gege	ninduktivität M, Gegeninduktion	227			
		3.7.1	Gegeninduktivität M	227			
		3.7.2	Beschreibung der Zweiwicklungsanordnung	230			
		3.7.3	Schaltungen mit Gegeninduktivitäten	233			
	3.8	Kräft	e im magnetischen Feld	239			
		3.8.1	Kräfte auf bewegte Ladungen und Ströme	239			
		3.8.2	Energie und Kraftwirkungen	243			
		3.8.3	Kraft auf Pole	246			
	3.9	Gleic	hstrommaschinen	252			
		3.9.1	Aufbau, Maschinengleichungen	252			
		3.9.2	Gleichstromgenerator	254			
		3.9.3	Gleichstrommotor	256			
Li	iterat	urverz	eichnis	260			
Sa	Sachwortverzeichnis						