Principles of Physical Chemistry

Understanding Molecules, Molecular Assemblies, Supramolecular Machines

Hans Kuhn

Max Planck Institute for Biophysical Chemistry, Göttingen, Germany

and

Horst-Dieter Försterling

Philipps Universität Marburg, Germany

JOHN WILEY & SONS, LTD Chichester • New York • Weinheim • Brisbane • Singapore • Toronto

C 1142

Copyright © 2000 by John Wiley & Sons Ltd, Baffins Lane, Chichester, West Sussex PO19 IUD, England

National 01243 779777 International (+44) 1243 779777 e-mail (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on http://www.wiley.co.uk or http://www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency, 90 Tottenham Court Road, London UK WIP 9HE, without the permission in writing of the publisher.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, USA

WILEY-VCH Verlag GmbH, Pappelallee 3, D-69469 Weinheim, Germany

Jacaranda Wiley Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons (Canada) Ltd, 22 Worcester Road, Rexdale, Ontario M9W 1L1, Canada

Library of Congress Cataloging-in-Publication Data

Kuhn, H. (Hans)
Principles of physical chemistry / H. Kuhn and H.D. Försterling.
p. cm.
Includes bibliographical references and index.
ISBN 0-471-95902-2 (hb). – ISBN 0-471-96541-3 (pb)
1. Chemistry, Physical and theoretical. I. Försterling, H. D.
II. Title
QD453.2.K84 1999
541.3 – dc21

98-48542 CIP

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0 471 95902 2 (HB) 0 471 96541 3 (PB)

Typeset in 10/12pt Times by Laser Words, Madras, India Printed and bound in Great Britain by Bookcraft (Bath) Ltd, Midsomer Norton, Avon This book is printed on acid-free paper responsibly manufactured from sustainable forestry, in which at least two trees are planted for each one used for paper production.

Contents

er.

۰.

Acknowledgements			xxiii	
Pr	eface	e and Guided Tour	XXV	
1	Way	1		
	1.1	Light	1	
		1.1.1 The Particle Nature of Light: Photoelectric Effect	1	
		1.1.2 Wave Nature of Light: Diffraction	3	
		1.1.3 Interpretation of the Experiments	7	
	1.2	Electrons	10	
		1.2.1 The Particle Nature of Electrons	10	
		1.2.2 Wave Nature of Electrons	11	
		1.2.3 Interpretation of the Experiments	13	
	1.3	Questions Arising About Wave–Particle Duality	13	
		1.3.1 Single Event: Probability Statement; Collective		
	Behavior:			
		Definite Statement	13	
		1.3.2 Wave–Particle Duality: The Need To Abandon Familiar		
		Ways of Thinking	15	
	Prob	blems	17	
		Problem 1.1 – Double-slit Experiment: Distribution		
		of $ \psi $ on the Screen	17	
		Problem 1.2 – Diffraction of Photons, Electrons, and Neutrons	17	
2	Basi	ic Features of Bonding	19	
	2.1	Distinct Energy States	20	
		2.1.1 Atomic Spectra	20	
		2.1.2 The Franck–Hertz Experiment	20	
	2.2	Standing Waves	22	
		2.2.1 A Particle Between Parallel Walls	22	
		2.2.2 The Heisenberg Uncertainty Relation	25	
		2.2.3 Meaningless Questions	26	
		2.2.4 Electron in a Box	26	

CONTENT	S
---------	---

	2.3	H Atom in the Ground State	27
		2.3.1 Box Model for H Atom	28
		2.3.2 Variation Principle	28
	2.4	H_2^+ Molecule Ion in the Ground State	31
		2.4.1 Forming H_2^+ from an H Atom and a Proton	32
		2.4.2 Box Model for H_2^+	32
	2.5	He ⁺ Ion, He Atom, and Similar Systems	33
		2.5.1 He ⁺ Ion and He Atom	33
		2.5.2 He-like Systems: H^- , Li^+ , Be^{2+}	34
		2.5.3 H_2 Molecule	35
	2.6	Pauli Exclusion Principle	36
		2.6.1 Nonexistence of He_2	36
		2.6.2 Li ⁺ H ⁻ (Ionic Crystal)	36
	Prob	lems	37
		Problem 2.1 – Franck–Hertz Experiment	37
		Problem 2.2 – Standing Waves Formed by Overlap of	
		Traveling Waves	37
3	Schr	ödinger Equation and Variation Principle	39
	31	Wave Equation and Schrödinger Equation	39
	0.11	3.1.1 Wave Equation	39
		3.1.2 Schrödinger Equation (One-dimensional)	42
		3.1.3 Schrödinger Equation (Three-dimensional)	44
	3.2	Normalization of the Wavefunctions	47
	3.3	Orthogonality of the Wavefunctions	50
	3.4	Time-dependent Schrödinger Equation	52
	3.5	H Atom in the Ground State	53
		3.5.1 Wavefunction	53
		3.5.2 Energy	54
		3.5.3 Radial Probability Distribution of Electron	54
		3.5.4 Average Potential Energy and Virial Theorem	57
		3.5.5 Most Probable and Average Distance of Electron from Nucleus	58
	3.6	H Atom in Excited States	58
		3.6.1 Energies and Wavefunctions	58
		3.6.2 Emission Spectra	61
	3.7	Variation Principle	65
		3.7.1 Justification of the Variation Principle	65
	3.8	Bohr Atomic Model and Correspondence Principle	69
		3.8.1 Bohr Atomic Model	69
		3.8.2 Correspondence Principle	70
	Prob	lems	71
		Problem 3.1 – H Atom: Ground State Derived from	
		the Schrödinger Equation	71
		Problem 3.2 - H Atom: Normalization of Wavefunction	72
		Problem 3.3 – Probability Density ρ	72
		Problem 3.4 – H Atom: Average Distance Between Electron and Nucleus	72
		Problem 3.5 – H Atom: Particle in a Box Trial Function	73
		Problem 3.6 – He ⁺ : Schrödinger Equation	73

vi

NTEN	TS	CONTENTS	vii
	27	Problem 3.7 – H Atom: Comovement of the Nucleus	74
	28	Problem 3.8 – Ground State Energy of H Atom by variation	75
	28	Frinciple Econdation 2.1 Electron in a Detantial Trough of Finite Denth	75 77
	31	Foundation 3.1 – Electron in a Potential Trough of Finite Deput	11
	32	Schrödinger Equation	79
	32	Foundation $3.3 - H_{-}$ Atom: Solution of the Schrödinger Equation	80
	22	Foundation $3.4 - Proof of Variation Principle$	82
	3/	roundation 3.1 Troof of Valuation Trinophe	-0
	35	4 Chemical Bonding and the Pauli Principle	85
	36	4.1 H_2^+ Molecule Ion	85
	36	4.1.1 Electron Described by Exact Wavefunction	85
	36	4.1.2 Electron Described by Box Wavefunctions	86
	37	4.1.3 Electron Density and Chemical Bond	89
	37	4.1.4 Virial Theorem	91
		4.1.5 Nature of the Chemical Bond	91
	37	4.1.6 Electron Described by Combination of Atomic Orbitals	91
		4.2 He Atom and Similar Systems	96
	39	4.2.1 Ground State of He	96
	39	4.2.2 Excited States of He	98
	39	4.3 Antisymmetry of Wavefunctions	99
	42	4.3.1 Energy Splitting in a Magnetic Field	99
	44	4.3.2 Spin Variables	102
	47	4.3.3 Pauli Exclusion Principle as Antisymmetry Postulate	102
	50	4.5.4 Singlet – Implet Splitting Caused by Coulonio Forces	103
	52	4.4 Quantum Mechanical Tunnening	104
	52	Problem A.1 – Kinetic Energy in Boy Model	104
	55 54	Problem 4.1 – Repulsion of the Two Electrons in He	104
	54	Problem 4.2 – Reputsion of the Two Electrons in the Problem 4.3 – Energy Separation of EPR I ines	105
	57	Foundation 4.1 – H^+_{+} Ion: Exact Wave Function and Energy Virial	105
18	58	Theorem	106
40	58	Foundation 4.2 – Evaluation of LCAO Integrals in H_2^+	108
	58	Foundation 4.3 – He Atom: Energy in the Grounds State	111
	61	Foundation 4.4 – Oscillation of Electron between Protons at Distance d	
	65	(Tunneling)	112
	65		5 X
	69	5 The Periodic Table and Simple Molecules	117
	69	5.1 Periodic Table of the Elements	117
	70	5.1.1 Basic Principles	117
	71	5.1.2 Hydrogen and Helium $(Z = 1 \text{ and } Z = 2)$	118
		5.1.3 Lithium $(Z = 3)$	119
	71	5.1.4 Autbau Principle and Periodic Table	120
	72	5.2 The Structure of Simple Molecules	124
	72	5.2.1 Simple Bond Widdels 5.2.2 The Delerity of Bonds and Electronocotivity	124
cleus	72	5.2.2 The Folarity of Donds and Electronegativity	120
	13	5.2.5 Donu Lenguis and Donu Angles	129
	15	5.2.4 Stretching and Dending Porce Constants	133

PERSONAL PROPERTY OF

	Problems				
	Problem 5.1 – Partial Charges and Dipole Moment				
		Proble	$2m 5.2 - Stretching Force Constant of H_2^+ Ion$	137	
		Proble	$m 5.3 - Bond Angle of H_2O$	139	
	<u> </u>				
6	Bon	ding De	escribed By Hybrid and Molecular Orbitals	140	
	6.1	Degen	eracy of Energy Levels	140	
		6.1.1	Hybrid Functions	142	
		6.1.2	Hybridization of H Atom Functions	144	
	6.2	Locali	zed Electrons: Hybrid Atomic Orbitals	147	
		6.2.1	Li Atom (No Hybridization)	147	
		6.2.2	BeH ₂ (Linear (<i>sp</i>) Hybridization: Two $s^{1/2}p^{1/2}$ Hybrid Orbitals)	148	
		6.2.3	H ₂ S and H ₂ O (Two Orbitals Between p and $s^{1/4}p^{3/4}$ Hybrid)	148	
		6.2.4	CH_4 (Tetrahedral (sp^3) Hybridization:		
			Four $s^{1/4}p^{3/4}$ Hybrid Orbitals)	150	
	6.3	Proper	ties of Electron Pair Bonds	151	
		6.3.1	Formal and Effective Charges	152	
		6.3.2	Polymerization of BeH ₂	154	
	6.4	Deloca	alized Electrons: Molecular Orbitals	154	
		6.4.1	Box Wavefunctions	154	
		6.4.2	LCAO Wavefunctions	155	
		6.4.3	Improvement of Trial Function	159	
	Prob	lems		159	
		Proble	m 6.1 – Linear Combinations of Wave Functions	159	
		Proble	m 6.2 – Degeneracy and Hybridization of Box Functions	159	
		Proble	m 6.3 – Orthogonality and Normalization of Hybrid Functions	160	
		Proble	m 6.4 – Symmetry Properties of Linear Hybrid Functions	160	
		Proble	m 6.5 – Energy of Hybrid States	160	
		Proble	m 6.6 – Structure of $B(CH_3)_3$ and Hg_2Cl_2	161	
		Proble	m 6.7 – Dative Bond	161	
		Proble	m 6.8 – Three-center Bond (CH_5^+)	161	
		Proble	m 6.9 – LCAO Model for O_2	162	
		Proble	m 6.10 – Molecular Orbitals of Some Diatomic Molecules	162	
7	Mol	ecules v	with π Electron Systems	163	
	7.1	Bondir	ng Properties of π Electrons	163	
	7.2	Free-el	lectron Model	165	
		7.2.1	Linear π Electron Systems	165	
		7.2.2	Cyclic π Electron Systems	171	
		7.2.3	Charge Density dQ/ds	173	
		7.2.4	Resonance	175	
		7.2.5	Branched Molecules	177	
	7.3	HMO	Model	181	
		7.3.1	Wavefunctions and Energies	181	
		7.3.2	Charge Density $dQ/d\tau$	184	
	7.4	Bond 1	Lengths, Dipole Moments	184	
		7.4.1	Bond Length and Charge Density	184	
		7.4.2	Bond Alternation in Polyenes and Fullerenes	187	
		7.4.3	Dipole Moment	187	

viii

10.50

NTENTS	CONTENTS	ix
137	Problems	189
137	Problem 7.1 – HMO Method: Ethene	189
137	Problem 7.2 – HMO Method: Butadiene	190
139	Problem 7.3 – HMO Method: Fulvene	191
	Problem 7.4 – Resonance of Hückel $(4n + 2)$ Rings	192
140	Problem 7.5 – Bond Lengths from Bond Orders	192
140	Problem 7.6 – Cyclobutadiene: Bond Lengths	192
142	Problem 7.7 – Dipole Moment of Fulvene	193
144	Foundation 7.1 – Free Electron Model	195
147	Foundation 7.2 – HMO Model	198
147	Foundation 7.3 – Self-consistency in Bond Alternation	200
s) 148		
148	8 Absorption and Emission of Light	204
	8.1 Basic Experimental Facts	204
150	8.1.1 Transmittance and Absorbance	204
151	8.1.2 Polyenes and Cyanines	207
152	8.2 Absorption Maxima of Dyes	209
154	8.2.1 Band Broadening	210
154	8.2.2 Single-molecule Absorption	210
154	8.2.3 Cyanine Dyes	211
155	8.3 Strength and Polarization of Absorption Bands	213
159	8.3.1 Oscillator Strength	213
159	8.3.2 Polarization of Absorption Bands	215
159	8.4 Heteroatoms as Probes for Electron Distribution	216
159	8.5 HOMO–LUMO Gap by Bond Alternation	219
160	8.6 Dyes with Cyclic Electron Cloud: Phthalocyanine	223
160	8.7 Coupling of π Electrons	226
161	8.8 Light Absorption of Biomolecules	228
161	8.8.1 β -Carotene	228
161	8.8.2 Retinal	230
162	8.8.3 Vitamin B_{12}	231
162	8.8.4 Chlorophyll, Bacteriochlorophyll	232
102	8.9 Spontaneous Emission	233
163	8.9.1 Fluorescence and Phosphorescence	233
163	8.9.2 Single Molecule Emission	235
165	8.9.3 Singlet and Triplet States	236
165	8.9.4 Shift of Fluorescence and Phosphorescence	000
171	Relative to Absorption	238
173	8.9.5 Absorption from Excited States	240
175	8.9.6 Quenching of Fluorescence	242
177	8.10 Sumulated Emission	242
181	8.10.1 Inversion of Population	242
181	8.10.2 Dye Laser	243
184	8.11. Onticel Activity	240
184	8.11 Upitcai Activity 8.11.1 Pototory Dispersion	247
184	8.11.2 Ellipticity	247
18/	8.11.3 Circular Dichroism	240
18/		249

STORE A

		8.11.4	Circular Dichroism of Spirobisanthracene	250
		8.11.5	Circular Dichroism of Chiral Cyanine Dye	253
	Prob	lems		253
		Proble	m 8.1 – Lone Electron Pair at the Nitrogen	253
		Proble	m 8.2 – Light Absorption of Different Classes of Dyes	254
		Proble	m 8.3 – Energy Shift in Azacyanines	254
		Proble	m 8.4 – Shift of Energy Levels by Bond Alternation	256
		Proble	m 8.5 – Light Absorption of Phthalocyanine and	
			Porphyrin	256
		Proble	m 8.6 – Oscillatory Strength in Phthalocyanine	
			and Porphyrin	257
		Proble	m 8.7 – Cis-Peak in β -Carotene	258
		Proble	m 8.8 – Splitting of Absorption Band	258
		Proble	m 8.9 – Circular Dichroism of Cyanine Dye	259
	Four	ndation	8.1 – Integrated Absorption: Classical Oscillator	261
	Four	idation	8.2 – Oscillator Strength: Quantum mechanical Treatment	265
	Four	ndation	8.3 – Coupling Transitions with Parallel Transition Moment	267
	Four	idation	8.4 – Normal modes of Coupled Oscillators	270
	Four	idation	8.5 – Fluorescence Life Time	274
	Four	ndation	8.6 - Proof of Relation for g (Anisotropy Factor)	276
9	Nuc	lei: Par	ticle and Wave Properties	278
	9.1	Quant	um Mechanical Rotator	278
		9.1.1	Exact Solution	279
		9.1.2	Simplified Model	280
	9.2	Rotati	onal Spectra	282
	9.3	Quant	um Mechanical Oscillator	287
		9.3.1	Exact Solution	288
		9.3.2	Box Model for Oscillator	291
		9.3.3	Comparison of a Quantum Mechanical Oscillator with a	
			Classical Oscillator	293
	9.4	Vibrat	ional–Rotational Spectra	294
		9.4.1	Diatomic Molecules	294
		9.4.2	Polyatomic Molecules	297
	9.5	Ramai	n Spectra	303
		9.5.1	Rayleigh Scattering	303
		9.5.2	Rotational Raman Spectra	305
		9.5.3	Vibrational-Rotational Raman Spectra of Diatomic	
			Molecules	307
		9.5.4	Raman Spectra of Polyatomics	310
	9.6	Vibrat	ional Structure of Electronic Spectra	312
		9.6.1	Diatomic Molecules	312
		9.6.2	Photoelectron Spectroscopy	312
		9.6.3	Polyatomic Molecules	317
	9.7	Nuclea	ar Spin (Orthohydrogen and Parahydrogen)	318
		9.7.1	Spin of Protons in H ₂	319
		9.7.2	Nuclear Wavefunctions	319
		9.7.3	Antisymmetry Postulate in H ₂	320

CALLER STATE OF STATE OF STATE

199-20

ONTENTS	CONTENTS	xi
250	9.8 Nuclear Magnetic Resonance	320
253	9.8.1 Fundamentals	320
253	9.8.2 Chemical Shift	321
253	9.8.3 Fine Structure of NMR Signals	323
254	Problems	324
254	Problem 9.1 – Wavefunction of an Harmonic Oscillator	324
256	Problem 9.2 – Oscillator: Box Wavefunctions	325
	Problem 9.3 – Classical Oscillator: Probability Density $\rho(x)$	326
256	Problem 9.4 – Isotope Effect in Vibrational–Rotational IR	
	Spectrum	326
257	Problem 9.5 – Bond Length of HCl from Raman Spectrum	327
258	Problem 9.6 – Bond Length of CO from Infrared Spectrum	328
258	Problem 9.7 – Force Constant of CO from IR Spectrum	328
259	Foundation 9.1 – Rotator: Solution of the Schrödinger Equation	330
261	Foundation 9.2 – Vibrational Structure of Electronic Absorption Bands	331
265		
267	10 Intermolecular Forces and Aggregates	333
270	10.1 Forces in Ionic Crystals	333
274	10.1.1 Attracting and Repelling Forces	333
276	10.1.2 Lattice Types	334
	10.2 Forces in Metals	340
278	10.2.1 Coulomb Energy: Electrons Considered as Being Localized	
278	at Lattice Points	341
279	10.2.2 Kinetic Energy: Electrons Considered as Being Delocalized	
280	Over the Lattice	341
282	10.2.3 Lattice Energy	344
287	10.3 Dipole Forces	344
288	10.4 Hydrogen Bonds	347
291	10.5 Induction Forces	348
	10.6 Dispersion Forces	349
293	10.7 Molecular Crystals	353
294	Problems	353
294	Problem 10.1 – The Energy of an Ion Pair	353
297	Problem 10.2 – Dipole – Dipole Attraction	354
303	Problem 10.3 – Polarizability of a Conducting Plate	354
303		
305	11 Thermal Motion of Molecules	356
	11.1 Kinetic Gas Theory and Temperature	356
307	11.1.1 Thermal Motion and Pressure	357
310	11.1.2 Avogadro's Law	362
312	11.1.3 Temperature Equilibration and Heat	364
312	11.1.4 Ideal Gas Law: Definition of Absolute Temperature	364
312	11.2 Speed of Molecules in a Gas	369
317	11.2.1 Mean Speed	369
318	11.2.2 Effusion	370
319	11.3 Mean Free Path and Collision Frequency	370
319	11.3.1 Mean Free Path	371
320	11.3.2 Collision Frequency	374
~~~		÷

	11.4	Diffusi	on	374
		11.4.1	Mean Displacement	374
		11.4.2	Equation of Einstein and Smoluchowski	378
		11.4.3	Fick's Law	379
		11.4.4	Gravity Competing with Thermal Motion	381
	11.5	Viscosi	ty Arising from Collisions of Molecules	383
		11.5.1	Viscous Flow	383
		11.5.2	Calculating Viscosity	384
		11.5.3	Dependence of Viscosity on Pressure	386
		11.5.4	Increasing $\eta$ with Increasing Temperature	386
		11.5.5	Calculating Collision Diameters	386
	11.6	Therma	al Motion in Liquids	387
		11.6.1	Collisions in Liquids	387
		11.6.2	Diffusion Coefficient $D$ of a Liquid	388
		11.6.3	Viscosity of a Liquid	389
		11.6.4	Stokes-Einstein Equation: Diffusion, Assembling, Interlocking	389
	11.7	Molecu	alar Motion and Phases	393
		11.7.1	Melting Point	394
		11.7.2	Boiling Point	395
		11.7.3	Critical Point	395
		11.7.4	Phases	396
		11.7.5	Clusters and Liquid Crystals	396
	Prob.	lems		397
		Problem	m 11.1 – Elastic Collisions of Spheres	397
		Proble	m 11.2 – Gas Bubbles Rising from the Bottom of a Sea	398
		Problem	m 11.3 – Pressure Change on Cooling in a Refrigerator	398
		Problem	m 11.4 – Gas Thermometer	398
		Proble	m 11.5 – Separation of Isotopes by Effusion	399
		Problem	m 11.6 – Separation of Isotopes by Using an Ultracentrifuge	399
		Problem	m 11.7 – Diffusion Path	400
		Problem	m 11.8 – Distribution Function for Diffusion Path	401
	F	Problem	m 11.9 – Evaporation of Water at Room Temperature	404
	Foun	dation	11.1 – Averaging the Free Path $\lambda$	405
	Foun	dation	11.2 – Intermolecular Forces Affecting the Mean Free Path	405
12	Ener	m Die	ribution in Molecular Accomplian	408
14	12 1	The D	Altzmann Distribution I aw	408
	12.1	12 1 1	System Consisting of Two Quantum States	408
		12.1.1 12.1.2	System Consisting of Many Quantum States	411
	122	Distrib	ution of Vibrational Energy	412
	14.4	1221	Population Number N	413
		12.2.1 12.2.1	Total Vibrational Energy $U_{n}$	414
	123	Distrib	ution of Rotational Energy	417
	14.5	1231	Population Numbers N	418
		12.3.2	Total Rotational Energy $U_{rot}$	418
	12.4	Transle	ational Energy	420
		12.4.1	Average Translational Energy According to Ouantum	0
			Mechanics	420

xii

N7	TENTS	CONTENTS	xili
	374	12.4.2 Maxwell–Boltzmann Distribution	422
	374	12.4.3 Deriving the Maxwell-Boltzmann Distribution	424
	378	12.4.4 Number of Translational Quantum States Available per	
	379	Molecule	427
	381	12.5 Distribution of Electronic Energy	428
	383	12.6 Proving the Boltzmann Distribution	429
	383	12.6.1 Distinguishable Particles	429
	384	12.6.2 Indistinguishable Particles	434
	386	Problems	435
	386	Problem 12.1 – Population of Quantum States of a	
	386	Rotator at Temperature T	435
	387	Problem 12.2 – Maxwell–Boltzmann Distribution: $v_{\rm P}$ , $\overline{v}$ , $\overline{v^2}$ and $E_{\rm trans}$	435
	387	Problem 12.3 – Number of Quantum States in a One-dimensional Gas	436
	388	Problem 12.4 – Population Probability	437
	389	Problem 12.5 – Boltzmann Distribution	437
g	389	Problems 12.6 and 12.7 – Superhelix as a Frozen Boltzmann	
	393	Distribution	438
	394	Problem 12.8 – Internal Energy for Particles Rotating on a Circle	441
	395	Foundation 12.1 – Oscillator: Population Numbers $N_n$ and Total Energy $U_{vib}$	442
	395	Foundation 12.2 – Rotator: Population Number $N_n$ and Total Energy $U_{rot}$	444
	396	Foundation 12.3 – Boltzmann Distribution	446
	396		
	397	13 Internal Energy $I$ Heat $a$ and Work $w$	450
	397	13.1 Change of State at Constant Volume	450
	398	13.1.1 Change of Internal Energy $\Delta U$ : Heat a	450
	398	13.1.2 Heat Canacity $C_{y}$	452
	398	13.2 Temperature Dependence of $C_{\rm M}$	453
	399	13.2.1 Rotational and Vibrational Contribution to Cy	453
	399	13.2.2 ortho- and para-H ₂ : Fascinating Quantum Effects on $C_V$	456
	400	13.2.3 Electronic Contribution to $C_V$ ( $C_V$ electronic	457
	401	13.2.4 Cy of Solids	457
	404	13.2.5 Characteristic Temperature	459
	405	13.3 Change of State at Constant Pressure	460
	405	13.3.1 Change of Internal Energy $\Delta U$ ; Heat q and work w	460
		13.3.2 Heat Capacity $C_{\rm P}$	461
	408	13.4 System and Surroundings; State Variables	462
	408	13.4.1 Defining System and Surroundings	462
	408	13.4.2 Defining State and State Variables	462
	411	13.4.3 Closed, Isolated, and Open Systems	464
	412	13.4.4 Cyclic Processes	465
	413	Problems	466
	414	Problem 13.1 – Isothermal Expansion of an Ideal Gas	466
	417	Problem 13.2 – Adiabatic Expansion of an Ideal Gas	468
	418		4.50
	418	14 Principle of Entropy Increase	469
	420	14.1 Irreversible and Reversible Changes of State	469
	1.5	14.1.1 Irreversible Changes	469
	420	14.1.2 Reversible Changes	470

CONTEN
--------

	14.2	Distribution Possibilities	472
		14.2.1 Mixing of Two Gases	473
		14.2.2 Expansion of a Gas	474
	14.3	Counting the Number of Configurations $\Omega$	477
		14.3.1 Probability $P$ of Reversion of an Irreversible	
		Process	477
		14.3.2 Particles Each in One of Three Energy States	477
		14.3.3 Number of Configurations $\Omega$ of an Atomic Gas	477
	14.4	Entropy of a System: $S = k \cdot \ln \Omega$	480
		14.4.1 Entropy of Atomic Gases	480
		14.4.2 Entropy of Diatomic Gases	481
	14.5	Entropy Change $\Delta S$	482
		14.5.1 Temperature Equilibration	482
		14.5.2 Mixing of Two Gases	483
		14.5.3 Entropy Increase in an Irreversible Process in an	
		Isolated System	483
		14.5.4 Entropy of Subsystems	484
		14.5.5 Entropy Change in Non-isolated Systems	486
	Probl	ems	486
		Problem 14.1 – Increase in the Number of Configurations with	
		Temperature Equilibration	486
	~	Problem 14.2 – Mixing Entropy	488
	Found	dation 14.1 – Entropy for Rotation and Vibration	490
15	Entre	ony S and Hoat a	402
15	15.1	Heat and Change of Entropy in Processes with Ideal Gases	403
	13.1	15.1.1 Expansion at Constant Temperature	403
		15.1.2 Thermal Equilibration	494
		15.1.2 Cyclic Processes and Processes in Isolated Systems	498
		15.1.4 Reversible Heat Engine with Ideal Gases (Carnot Cycle)	498
	15.2	Heat and Change of Entropy in Arbitrary Processes	501
	15.2	Entropies of Substances	507
	15.5	Thermodynamic Temperature Scale and Cooling	511
	15.5	Laws of Thermodynamics	511
	Probl	ems	513
	11001	Problem 15.1 – Reversible Adiabatic Expansion	513
		Problem 15.2 – Entropy of Mixing	514
		Problem 15.3 – Efficiency of Different Heat Engines	515
		Problem 15.5 – Efficiency of a Power Station	515
		Problem 15.5 – Heat Pump	515
		Problem 15.6 – Air Conditioning	515
		Problem 15.7 – Entropy and Configurations of Water	516
16	Crite	eria for Chemical Reactions	517
	16.1	Heat Exchange	518
		16.1.1 Reaction at Constant Volume: $q = \Delta U$	518
		16.1.2 Reaction at Constant Pressure: $q = \Delta H$	520

xiv

NTENTS

107.22 - 10 TA

472	16.2 Change of Internal Energy and Enthalpy	522
473	16.2.1 Temperature Dependence of $\Delta U$ and $\Delta H$	522
474	16.2.2 Molar Enthalpies of Formation from Elements $\Delta_{\rm f} H^{\ominus}$	524
477	16.2.3 Molar Enthalpy of Reaction $\Delta_{\rm r} H^{\ominus}$	525
	16.3 Conditions for Spontaneous Reactions	528
477	16.3.1 Helmholtz Energy and Gibbs Energy	528
477	16.3.2. Reversible Work $w_{rev}$	529
477	16.4 Change of Gibbs Energy	530
480	16.4.1 Molar Gibbs Energy of Formation from Elements $\Delta_{e}G^{\Theta}$	530
480	16.4.2 Molar Gibbs Energy of Reaction $\Lambda_{-}G^{\ominus}$	531
481	16.4.3 Temperature Dependence of $\Lambda G^{\Theta}$	531
482	$16.4.4$ Pressure Dependence of $\Delta G$	533
402	Drohlame	535
402	Problem 16.1 Runsen Burner Fed with Methane	535
403	Droblem 16.2 $\rightarrow$ A H from Standard Enthalping of Formation	535
402	Problem 16.2 – $\Delta_r n$ from standard Enhances of Formaton Droblem 16.2 – Temperature Degulation in the Human Body	536
485	Problem 16.4 Sponteneous Reactions	527
484	Problem 10.4 – Spontaneous Reactions	527
486	Problem 16.5 – Burning Limestone on Mount Everest	557
486	Foundation 16.1 – How to Calculate $S_{T_1}^{-2}\Delta C_{P,m}^{-1} \cdot dT$	539
	Foundation 16.2 – How to Calculate $\Delta G_{T_2}$ from $\Delta G_{T_1}$	542
486		EAE
488	17 Chemical Equilibrium	343
490	17.1 $\Delta G$ for Reactions in Gas Mixtures	546
	17.1.1 Mass Action Law and Equilibrium Constant K	546
492	17.1.2 Equilibrium Constant K from $\Delta_r G^{\ominus} = -RT \cdot \ln K$	549
493	17.1.3 Reactions Involving Gases and Immiscible Condensed	
493	Species	553
494	17.1.4 Van't Hoff Equation	554
498	17.1.5 Statistical Interpretation of $K$	555
498	17.1.6 Estimation of $K = f(T)$	557
501	17.1.7 $\Delta H$ and $\Delta S$ from Measured K	558
507	17.1.8 Vapor Pressure	559
511	17.2 $\Delta G$ for Reactions in Dilute Solution	560
511	17.2.1 Osmotic Pressure and Concentration	560
512	17.2.2 Concentration and Molality	562
515	17.2.3 Depression of Vapor Pressure	562
515	17.2.4 Reversible Change of Concentration	565
514	17.2.5 Mass Action Law: Solutions of Neutral Particles	565
515	17.2.6 Mass Action Law: Solutions of Charged Particles	567
515	17.2.7 Gibbs Energy of Formation in Aqueous Solution	570
515	17.2.8 Part of Reactants or Products in Condensed or Gaseous State	573
515	Problems	575
516	Problem 17.1 – Equilibrium Constant Calculated from $\Delta H$ and $\Delta S$	575
	Problem 17.2 – Dissociation of $I_2$	575
517	Problem 17.3 – Hydrogen–Iodine Equilibrium	576
518	Problem 17.4 – Formation of NH ₃ from Its Elements	576
518	Problem 17.5 – Boiling Point of Water on Mount Everest	577
520	Problem 17.6 – Reverse Osmosis	577

	COM	VTE	N7	S
--	-----	-----	----	---

		Problem 17.7 – Elevation of Boiling Point	577
		Problem 17.8 – Depression of Melting Point	578
18	Read	tions in Aqueous Solution and in Biosystems	579
10	18.1	Proton Transfer Reactions: Dissociation of Weak Acids	579
	10.1	18.1.1 Henderson-Hasselbalch Equation	579
		18.1.2 Degree of Dissociation	580
		18.1.3 Acid in a Buffer	581
		18.1.4 Titration Curve of a Weak Acid	582
		18.1.5 Stepwise Proton Transfer: Amino Acids	583
	18.2	Electron Transfer Reactions	584
		18.2.1 Electron Transfer from Metal to Proton: Dissolution	
		of Metals in Acid	584
		18.2.2 Electron Transfer from Metal 1 to Metal 2 Ion:	
		Coupled Redox Reactions	585
		18.2.3 Electron Transfer Coupled with Proton Transfer	586
		18.2.4 Electron Transfer to Proton at pH 7: $\Delta G^{\Theta'}$	587
	18.3	Group Transfer Reactions in Biochemistry	588
		18.3.1 Group Transfer Potential	589
		18.3.2 Coupling of Reactions by Enzymes	590
	18.4	Bioenergetics	591
		18.4.1 Synthesis of Glucose	591
		18.4.2 Combustion of Glucose	592
	_	18.4.3 Energy Balance of Formation and Degradation of Glucose	592
	Prob	lems	594
		Problem 18.1 – pH of Weak Acid for Different Total Concentrations	594
		Problem 18.2 – Buffer Solutions	595
		Problem 18.3 – pH of Amino Acids	596
	г	Problem 18.4 – Absorption Maximum of NADH	596
	Four	idation 18.1 – litration of Acetic Acid by NaOH	597
19	Che	mical Reactions in Electrochemical Cells	600
	19.1	$\Delta G$ and Potential E of an Electrochemical Cell Reaction	600
	19.2	Concentration Cells	604
		19.2.1 Metal Electrodes	604
		19.2.2 Gas Electrodes	607
	19.3	Standard Potential $E^{\Theta}$	609
		19.3.1 Nernst Equation	609
	10.4	19.3.2 Practical Determination of $E^{\ominus}$	610
	19.4	Redox Reactions	611
		19.4.1 $Fe^{3+}/Fe^{2+}$ Electrode	611
		19.4.2 Quinone/Hydroquinone Electrode	611
		19.4.5 NAU'/NADH Electrode	612
	10 5	19.4.4 UXygen Electrode	613
	19.5	Applications of Electrochemical Cells	613
		19.5.1 Reference Electrodes	615
		17.3.2 OldSS Electiones	015

xvi

			170
-(20)	$\Lambda H$	FU	IIS

VN	r	
~ × v	I	L

.

577	19.5.3 Galvanic Elements	616
578	19.5.4 Fuel Cells	618
	19.5.5 Electrolysis	619
579	19.6 Conductivity of Electrolyte Solutions	620
579	19.6.1 Mobility of Ions	620
579	19.6.2 Generalization	622
580	Problems	624
581	Problem 19.1 – Acceleration of Na ⁺ Ions	624
582	Problem 19.2 – Thermodynamic and Electrochemical Data	625
583	Problem 19.3 – Complex Formation	625
584	Problem 19.4 – Calculation of $\Delta G^{\ominus}$ and $E^{\ominus}$	626
201	20 Real Systems	627
584	20.1 Phase Equilibria	627
	20.2 Equation of State for Real Gases	629
585	20.2.1 van der Waals Equation	630
586	20.2.2 Critical Point and van der Waals Constants	633
587	20.2.3 Virial Coefficients	634
588	20.3 Change of State of Real Gases	636
589	20.3.1 Isothermal Compression of a van der Waals Gas	636
590	20.3.2 Fugacity and Equilibrium Constant	636
591	20.3.3 Adjabatic Expansion into Vacuum	640
591	20.3.4 Joule-Thomson Effect	642
592	20.4 Change of State of Real Solutions	646
592	20.4.1 Partial Molar Volume	646
594	20.4.2 Chemical Potential	648
594	20.4.3 Activities and Equilibrium Constants in Solutions with Ions	649
595	Problems	653
596	Problem 20.1 – Freezing Point of Mercury	653
596	Problem 20.2 – Determination of Fugacity Coefficient $\phi$	653
597	Problem 20.3 – Charge Distribution $\rho(r)$	654
551	Problem 20.4 – Activity Coefficient $\nu_{\pm}$ for HCl	655
	Foundation 20.1 – Distribution of Ions at a Charged Plate	657
600		
600	21 Kinetics of Chemical Reactions	663
604	21.1 Collision Theory for Gas Reactions	663
604	21.1.1 Counting the Number of Collisions	663
607	21.1.2 Activation	665
609	21.1.3 Accumulation of Kinetic Energy	666
609	21.2 Rate Equation for Gas Reactions	669
610	21.2.1 Rate Constant and Frequency Factor	669
611	21.2.2 Reactants A and B are Identical Molecules	672
611	21.3 Rate Equation for Reactions in Solution	672
611	21.3.1 Reaction Through Activated Complex	672
612	21.3.2 Diffusion Controlled Reaction	674
613	21.4 Transition State Theory	675
613	21.4.1 Eyring Equation for Bimolecular Reaction	6/5
613	21.4.2 Activation Enthalpy and Activation Entropy	6/6
615	21.4.3 Decay Reaction	6//

21.5	Treatment of Experimental Data	677
	21.5.1 Rate Constants	677
	21.5.2 Activation Energy and Frequency Factor	682
	21.5.3 Activation Enthalpy and Activation Entropy	685
	21.5.4 Tunneling of Proton and Deuteron	687
21.6	Complex Reactions	689
	21.6.1 Reactions Leading to Equilibrium	689
	21.6.2 Parallel Reactions	692
	21.6.3 Consecutive Reactions	693
	21.6.4 Chain Reactions	697
	21.6.5 Branching Chain Reactions	699
	21.6.6 Enzyme Reactions (Michaelis-Menten Mechanism)	700
	21.6.7 Autocatalytic Reactions	703
	21.6.8 Inhibition of Autocatalysis	707
	21.6.9 Bistability	709
	21.6.10 Oscillating Reactions (Belousov-Zhabotinsky Reaction)	710
	21.6.11 Chemical Waves	714
21.7	Experimental Methods	719
	21.7.1 Flow Methods	720
	21.7.2 Flash Photolysis	721
	21.7.3 Relaxation Method	722
Prob	lems	726
	Problem 21.1 – Second-order Reaction	726
	Problem 21.2 – Reaction Leading to Equilibrium	727
	Problem 21.3 – Yield of Main Reaction	727
	Problem 21.4 – Consecutive Reaction	728
	Problem 21.5 – Autocatalytic Reaction	729
	Problem 21.6 – Unimolecular Reactions	730
22. Org	anized Molecular Assemblies	732
22 015	Interfaces	732
22.1	22.1.1 Surface Tension and Interfacial Tension	732
	22.1.1 Surface Films	737
	22.1.3 Insoluble Monolavers	738
	22.1.4 Solid Surfaces	741
	22.1.5 Micelles	742
22.2	Liquid Crystals	743
	22.2.1 Birefringence	746
	22.2.2 Selective Reflection	746
	22.2.3 Electro-optical Effects	747
22.3	Membranes	750
	22.3.1 Soap Lamella	750
	22.3.2 Black Lipid Membranes	751
	22.3.3 Liposomes	752
	22.3.4 Biomembranes	752
22.4	Macromolecules	755
	22.4.1 Random Coil: A Chain of Statistical Chain Elements	755
	22.4.2 Length of Statistical Chain Element from Light Scattering	760

#### xviii

NTENTS

		22.4.3 Length of Statistical Chain Element from Hydrodynamic	
		Properties	762
1		22.4.4 Refined Theory: Macroscopic Models	765
		22.4.5 Uncoiling Coil	769
		22.4.6 Restoring Coil	774
		22.4.7 Motion Through Entangled Polymer Chains	776
		22.4.8 Rubber Elasticity	781
	22.5	Supramolecular Structures	786
	Prob	lems	787
		Problem 22.1 – Contact angles	787
		Problem 22.2 – Transfer of Charge e from Water into a Membrane	787
		Problem 22.3 – Light Scattering (diameter of molecules $\ll \lambda$ )	788
		Problem 22.4 – Light Scattering (diameter of molecules $< \lambda/4$ )	788
		Problem 22.5 – Special Case of Scattering Relation (22.29)	789
		Problem 22.6 – Molar Mass from Diffusion and Sedimentation	789
		Problem 22.7 – Extension of an unraveled coil	790
	Four	ndation 22.1 – Mobility of DNA in Meshwork	792
23	Sun	ramolecular Machines	794
2.	23.1	Energy Transfer Illustrating the Idea of a Supramolecular	121
	20.1	Machine	794
	23.2	Programmed Interlocking Molecules	795
	23.3	Manipulating Photon Motion	800
		23.3.1 Energy Transfer Between Dye Molecules	800
		23.3.2 Functional Unit by Coupling Dye Molecules	803
		23.3.3 Dye Aggregate as Energy Harvesting Device	805
		23.3.4 Solar Energy Harvesting in Biosystems	810
		23.3.5 Manipulating Luminescence Lifetime by Programming Echo	
1		Radiation Field	812
		23.3.6 Nonlinear Optical Phenomena	815
	23.4	Manipulating Electron Motion	818
1		23.4.1 Photoinduced Electron Transfer in Designed Monolayer	
		Assemblies	818
		23.4.2 Switching by Photoinduced Electron Transfer	819
		23.4.3 Monolayer Assemblies for Elucidating the Nature of	
		Photographic Sensitization	821
		23.4.4 Conducting Molecular Wires	823
		23.4.5 Solar Energy Conversion: The Electron Pump of Plants	0.00
		and Bacteria	826
		23.4.6 Artificial Photoinduced Electron Pumping	830
		23.4.7 Tunneling Current Inrough Monolayer	831
	775	23.4.8 Electron Transfer Infough Proteins	833 022
	25.5	22.5.1 Light induced Change of Monolever Properties	033
		23.5.1 Eight-induced Change of Monolayer Properties	836
		23.5.2 Solar Energy Conversion in fialobacteria	020
		System	811
		23.5.4 Mechanical Switching Devices	845
		20.011 Internation Ownering Devices	010

xix

	23.6 N	Molecu	lar Recognition and Replica Formation	847
	2	23.6.1	Multisite Recognition of a Molecule at a Surface Layer	847
	2	23.6.2	Catalytic Reaction in Solution	848
	2	23.6.3	Catalytic Reaction in Organized Media	848
	2	23.6.4	Molecular Replica Formation	850
	2	23.6.5	Biosensors	852
	23.7 A	Address	sing and Positioning Molecules	853
	2	2371	STM (scanning tunneling microscopy)	853
	2	372	AFM (atomic force microscopy)	854
	5	272	SNOM (scanning near-field ontical microscony)	856
	Droble	me	STOW (seaming near new optical microscopy)	858
	TIUDIC	Driahlan	22.1 Derivation of Equation for a in Foundation 23.4	858
	r T	Duchlas	22.2 Dielectric Medium es a Tunneling Parrier	858
	1		22.2 – Dielectric Medium as a Tunnening Damer	850
	1	roblen	23.5 – Induced Dipole Moment	039
	ł	roblen	n 23.4 – Proton Pump: Field of Charged Amino Acids at	0(0
	-		Chromophore	800
	ł	Problem	n 23.5 – Circular Dichroism and Structural Features of	0(1
			Chlorosomes	861
	Found	ation 2	3.1 – Energy Transfer	862
	Found	ation 2	3.2 – Energy transfer from Exciton to Acceptor	865
	Found	ation 2	3.3 – Radiation Echo field	867
	Found	ation 2	3.4 – Electron Transfer Between $\pi$ -Electron Systems	871
	Found	ation 2	3.5 – Electron Transfer in Soft Medium	877
24	Origin	1 of Li	fe	880
24	<b>Origin</b> 24.1 I	1 of Li	fe ration of Complex Systems	<b>880</b> 880
24	Origin 24.1 I	1 of Li Investig	fe ation of Complex Systems Need for Simplifying Models	<b>880</b> 880 880
24	<b>Origin</b> 24.1 I	<b>1 of Li</b> Investig 24.1.1 24.1.2	fe gation of Complex Systems Need for Simplifying Models Increasing Simplification with Increasing Stages of	<b>880</b> 880 880
24	<b>Origin</b> 24.1 I 2 2	1 of Li Investig 24.1.1 24.1.2	fe gation of Complex Systems Need for Simplifying Models Increasing Simplification with Increasing Stages of Complexity	<b>880</b> 880 880
24	Origin 24.1 I 2 2	n of Li Investig 24.1.1 24.1.2	fe gation of Complex Systems Need for Simplifying Models Increasing Simplification with Increasing Stages of Complexity Fe Emerge by Physicochemical Processes?	880 880 880 881 881
24	Origin 24.1 I 2 2 2 2 4.2 C	n of Li Investig 24.1.1 24.1.2 Can Lif	fe gation of Complex Systems Need for Simplifying Models Increasing Simplification with Increasing Stages of Complexity fe Emerge by Physicochemical Processes? Bioevolution as Process of Learning	880 880 880 881 881 881
24	Origin 24.1 I 24.2 Q 24.2 Q	n of Li Investig 24.1.1 24.1.2 Can Lif 24.2.1	fe gation of Complex Systems Need for Simplifying Models Increasing Simplification with Increasing Stages of Complexity fe Emerge by Physicochemical Processes? Bioevolution as Process of Learning Model Case for the Learning Mechanism	880 880 881 881 881 881 882
24	Origin 24.1 I 22 24.2 C 22 24.2 C	n of Li Investig 24.1.1 24.1.2 Can Lif 24.2.1 24.2.2	fe gation of Complex Systems Need for Simplifying Models Increasing Simplification with Increasing Stages of Complexity fe Emerge by Physicochemical Processes? Bioevolution as Process of Learning Model Case for the Learning Mechanism Modeling the Emergence of the Ganatic Appendix	880 880 881 881 881 881 882 885
24	Origin 24.1 I 24.2 Q 24.2 Q 22 22 22 22 22 22 22 22 22 22 22 22 22	n of Li Investig 24.1.1 24.1.2 Can Lif 24.2.1 24.2.2 24.2.3	fe gation of Complex Systems Need for Simplifying Models Increasing Simplification with Increasing Stages of Complexity fe Emerge by Physicochemical Processes? Bioevolution as Process of Learning Model Case for the Learning Mechanism Modeling the Emergence of the Genetic Apparatus	880 880 881 881 881 881 882 885
24	Origin 24.1 I 24.2 Q 24.2 Q 22 22 22 22 22 22 22 22 22 22 22 22 22	n of Li Investig 24.1.1 24.1.2 Can Lif 24.2.1 24.2.2 24.2.2 24.2.3 24.2.4	fe gation of Complex Systems Need for Simplifying Models Increasing Simplification with Increasing Stages of Complexity fe Emerge by Physicochemical Processes? Bioevolution as Process of Learning Model Case for the Learning Mechanism Modeling the Emergence of the Genetic Apparatus Later Evolutionary Steps: Emergence of an Eye With Lens	880 880 881 881 881 881 882 885 894
24	Origin 24.1 I 2 2 2 4.2 ( 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	n of Li Investig 24.1.1 24.1.2 Can Lif 24.2.1 24.2.2 24.2.3 24.2.3 24.2.4 General	fe gation of Complex Systems Need for Simplifying Models Increasing Simplification with Increasing Stages of Complexity fe Emerge by Physicochemical Processes? Bioevolution as Process of Learning Model Case for the Learning Mechanism Modeling the Emergence of the Genetic Apparatus Later Evolutionary Steps: Emergence of an Eye With Lens Aspects of Life	<ul> <li>880</li> <li>880</li> <li>880</li> <li>881</li> <li>881</li> <li>881</li> <li>882</li> <li>885</li> <li>894</li> <li>895</li> </ul>
24	Origin 24.1 I 24.2 Q 24.2 Q 22 24.3 Q 24.3 Q 24.3 Q	n of Li Investig 24.1.1 24.1.2 Can Lif 24.2.1 24.2.2 24.2.3 24.2.4 General 24.3.1	fe gation of Complex Systems Need for Simplifying Models Increasing Simplification with Increasing Stages of Complexity fe Emerge by Physicochemical Processes? Bioevolution as Process of Learning Model Case for the Learning Mechanism Modeling the Emergence of the Genetic Apparatus Later Evolutionary Steps: Emergence of an Eye With Lens Aspects of Life Information and	880 880 881 881 881 882 885 894 895
24	Origin 24.1 I 24.2 Q 24.2 Q 22 24.3 Q 24.3 Q 24.3 Q	n of Li Investig 24.1.1 24.1.2 Can Lif 24.2.1 24.2.2 24.2.2 24.2.3 24.2.4 General 24.3.1	fe gation of Complex Systems Need for Simplifying Models Increasing Simplification with Increasing Stages of Complexity fe Emerge by Physicochemical Processes? Bioevolution as Process of Learning Model Case for the Learning Mechanism Modeling the Emergence of the Genetic Apparatus Later Evolutionary Steps: Emergence of an Eye With Lens Aspects of Life Information and Knowledge	880 880 881 881 881 882 885 894 895 895
24	Origin 24.1 I 24.2 Q 24.2 Q 22 24.3 Q 24.3 Q 22 24.3 Q 22 24.3 Q	n of Li Investig 24.1.1 24.1.2 Can Lif 24.2.1 24.2.2 24.2.3 24.2.4 General 24.3.1 24.3.2	fe gation of Complex Systems Need for Simplifying Models Increasing Simplification with Increasing Stages of Complexity fe Emerge by Physicochemical Processes? Bioevolution as Process of Learning Model Case for the Learning Mechanism Modeling the Emergence of the Genetic Apparatus Later Evolutionary Steps: Emergence of an Eye With Lens Aspects of Life Information and Knowledge Processing Information and Genesis	880 880 881 881 881 882 885 894 895 895
24	Origin 24.1 I 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	n of Li Investig 24.1.1 24.1.2 Can Lif 24.2.1 24.2.2 24.2.3 24.2.4 General 24.3.1 24.3.2	fe gation of Complex Systems Need for Simplifying Models Increasing Simplification with Increasing Stages of Complexity Fe Emerge by Physicochemical Processes? Bioevolution as Process of Learning Model Case for the Learning Mechanism Modeling the Emergence of the Genetic Apparatus Later Evolutionary Steps: Emergence of an Eye With Lens Aspects of Life Information and Knowledge Processing Information and Genesis of Information and Knowledge	880 880 881 881 881 882 885 894 895 895 895
24	Origin 24.1 I 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	n of Li Investig 24.1.1 24.1.2 Can Lif 24.2.1 24.2.2 24.2.3 24.2.4 General 24.3.1 24.3.2 24.3.2	fe gation of Complex Systems Need for Simplifying Models Increasing Simplification with Increasing Stages of Complexity fe Emerge by Physicochemical Processes? Bioevolution as Process of Learning Model Case for the Learning Mechanism Modeling the Emergence of the Genetic Apparatus Later Evolutionary Steps: Emergence of an Eye With Lens Aspects of Life Information and Knowledge Processing Information and Genesis of Information and Knowledge Limits of Physicochemical Ways of Thinking	880 880 881 881 881 882 885 894 895 895 895 895
24	Origin 24.1 I 2 2 2 4.2 C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	n of Li Investig 24.1.1 24.1.2 Can Lif 24.2.1 24.2.2 24.2.3 24.2.3 24.2.4 General 24.3.1 24.3.2 24.3.3 ems	fe gation of Complex Systems Need for Simplifying Models Increasing Simplification with Increasing Stages of Complexity fe Emerge by Physicochemical Processes? Bioevolution as Process of Learning Model Case for the Learning Mechanism Modeling the Emergence of the Genetic Apparatus Later Evolutionary Steps: Emergence of an Eye With Lens Aspects of Life Information and Knowledge Processing Information and Genesis of Information and Knowledge Limits of Physicochemical Ways of Thinking	880 880 880 881 881 881 882 885 894 895 895 895 895 899 903
24	Origin 24.1 I 2 2 2 4.2 C 2 2 2 2 4.3 C 2 2 2 4.3 C 2 2 2 4.3 C 2 2 2 4.3 C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	n of Li Investig 24.1.1 24.1.2 Can Lif 24.2.1 24.2.2 24.2.3 24.2.4 General 24.3.1 24.3.2 24.3.3 ems Problem	fe gation of Complex Systems Need for Simplifying Models Increasing Simplification with Increasing Stages of Complexity Fe Emerge by Physicochemical Processes? Bioevolution as Process of Learning Model Case for the Learning Mechanism Modeling the Emergence of the Genetic Apparatus Later Evolutionary Steps: Emergence of an Eye With Lens Aspects of Life Information and Knowledge Processing Information and Genesis of Information and Knowledge Limits of Physicochemical Ways of Thinking	880 880 881 881 881 882 885 894 895 895 895 895 895 899 903 903
24	Origin 24.1 I 2 2 2 4.2 C 2 2 2 2 4.3 C 2 2 2 4.3 C 2 2 2 4.3 C 2 2 2 4.3 C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	n of Li Investig 24.1.1 24.1.2 Can Lid 24.2.1 24.2.2 24.2.2 24.2.3 24.2.4 General 24.3.1 24.3.2 24.3.2 24.3.3 problem Problem	fe gation of Complex Systems Need for Simplifying Models Increasing Simplification with Increasing Stages of Complexity fe Emerge by Physicochemical Processes? Bioevolution as Process of Learning Model Case for the Learning Mechanism Modeling the Emergence of the Genetic Apparatus Later Evolutionary Steps: Emergence of an Eye With Lens Aspects of Life Information and Knowledge Processing Information and Genesis of Information and Knowledge Limits of Physicochemical Ways of Thinking n 24.1 – Aggregation of Folded Strands n 24.2 – Replication Error Rate of a Bacterium and a Human	880 880 881 881 881 882 885 894 895 895 895 895 895 899 903 903 903
24	Origin 24.1 I 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	n of Li Investig 24.1.1 24.1.2 Can Lif 24.2.1 24.2.2 24.2.3 24.2.3 24.2.4 General 24.3.1 24.3.2 24.3.3 ems Problem Problem	fe gation of Complex Systems Need for Simplifying Models Increasing Simplification with Increasing Stages of Complexity fe Emerge by Physicochemical Processes? Bioevolution as Process of Learning Model Case for the Learning Mechanism Modeling the Emergence of the Genetic Apparatus Later Evolutionary Steps: Emergence of an Eye With Lens Aspects of Life Information and Knowledge Processing Information and Genesis of Information and Knowledge Limits of Physicochemical Ways of Thinking n 24.1 – Aggregation of Folded Strands n 24.2 – Replication Error Rate of a Bacterium and a Human n 24.3 – Time Needed to Evolve a Bacterium	880 880 881 881 881 882 885 894 895 895 895 895 895 895 899 903 903 903 904 904
24	Origin 24.1 I 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	n of Li Investig 24.1.1 24.1.2 Can Lif 24.2.1 24.2.2 24.2.3 24.2.4 General 24.3.1 24.3.2 24.3.3 ems Problem Problem Problem	fe gation of Complex Systems Need for Simplifying Models Increasing Simplification with Increasing Stages of Complexity fe Emerge by Physicochemical Processes? Bioevolution as Process of Learning Model Case for the Learning Mechanism Modeling the Emergence of the Genetic Apparatus Later Evolutionary Steps: Emergence of an Eye With Lens Aspects of Life Information and Knowledge Processing Information and Genesis of Information and Knowledge Limits of Physicochemical Ways of Thinking n 24.1 – Aggregation of Folded Strands n 24.2 – Replication Error Rate of a Bacterium and a Human n 24.3 – Time Needed to Evolve a Bacterium n 24.4 – Maximum Genetic Information Carried by DNA	880 880 881 881 881 882 885 894 895 895 895 895 895 895 899 903 903 904 904 905
24	Origin 24.1 I 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	n of Li Investig 24.1.1 24.1.2 Can Lif 24.2.1 24.2.2 24.2.3 24.2.3 24.2.4 General 24.3.1 24.3.2 24.3.3 ems Problem Problem Problem Problem	fe gation of Complex Systems Need for Simplifying Models Increasing Simplification with Increasing Stages of Complexity fe Emerge by Physicochemical Processes? Bioevolution as Process of Learning Model Case for the Learning Mechanism Modeling the Emergence of the Genetic Apparatus Later Evolutionary Steps: Emergence of an Eye With Lens Aspects of Life Information and Knowledge Processing Information and Genesis of Information and Knowledge Limits of Physicochemical Ways of Thinking n 24.1 – Aggregation of Folded Strands n 24.2 – Replication Error Rate of a Bacterium and a Human n 24.3 – Time Needed to Evolve a Bacterium n 24.4 – Maximum Genetic Information Carried by DNA 4.1 – The Emergence of a Simple Genetic Apparatus	<ul> <li>880</li> <li>880</li> <li>881</li> <li>881</li> <li>881</li> <li>882</li> <li>885</li> <li>894</li> <li>895</li> <li>895</li> <li>895</li> <li>895</li> <li>895</li> <li>899</li> <li>903</li> <li>904</li> <li>904</li> <li>905</li> </ul>
24	Origin 24.1 I 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	n of Li Investig 24.1.1 24.1.2 Can Lif 24.2.1 24.2.2 24.2.3 24.2.3 24.2.4 General 24.3.1 24.3.2 24.3.3 ems Problem Problem Problem Problem lation 2 Viewed	fe gation of Complex Systems Need for Simplifying Models Increasing Simplification with Increasing Stages of Complexity fe Emerge by Physicochemical Processes? Bioevolution as Process of Learning Model Case for the Learning Mechanism Modeling the Emergence of the Genetic Apparatus Later Evolutionary Steps: Emergence of an Eye With Lens Aspects of Life Information and Knowledge Processing Information and Genesis of Information and Knowledge Limits of Physicochemical Ways of Thinking n 24.1 – Aggregation of Folded Strands n 24.2 – Replication Error Rate of a Bacterium and a Human n 24.3 – Time Needed to Evolve a Bacterium n 24.4 – Maximum Genetic Information Carried by DNA 4.1 – The Emergence of a Simple Genetic Apparatus as a Supramolecular Engineering Problem. A thought	<ul> <li>880</li> <li>880</li> <li>881</li> <li>881</li> <li>881</li> <li>882</li> <li>885</li> <li>894</li> <li>895</li> <li>895</li> <li>895</li> <li>895</li> <li>899</li> <li>903</li> <li>904</li> <li>904</li> <li>905</li> </ul>
24	Origin 24.1 I 2 2 2 2 4.2 C 2 2 2 2 2 4.3 C 2 2 2 2 4.3 C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	n of Li Investig 24.1.1 24.1.2 Can Lif 24.2.1 24.2.2 24.2.3 24.2.3 24.2.4 General 24.3.1 24.3.2 24.3.3 ems Problem Problem Problem Problem Pation 2 Viewed Experir	fe gation of Complex Systems Need for Simplifying Models Increasing Simplification with Increasing Stages of Complexity Fe Emerge by Physicochemical Processes? Bioevolution as Process of Learning Model Case for the Learning Mechanism Modeling the Emergence of the Genetic Apparatus Later Evolutionary Steps: Emergence of an Eye With Lens Aspects of Life Information and Knowledge Processing Information and Genesis of Information and Knowledge Limits of Physicochemical Ways of Thinking n 24.1 – Aggregation of Folded Strands n 24.2 – Replication Error Rate of a Bacterium and a Human n 24.3 – Time Needed to Evolve a Bacterium n 24.4 – Maximum Genetic Information Carried by DNA 4.1 – The Emergence of a Simple Genetic Apparatus as a Supramolecular Engineering Problem. A thought nent	<ul> <li>880</li> <li>880</li> <li>881</li> <li>881</li> <li>881</li> <li>882</li> <li>885</li> <li>894</li> <li>895</li> <li>895</li> <li>895</li> <li>895</li> <li>895</li> <li>899</li> <li>903</li> <li>903</li> <li>904</li> <li>904</li> <li>905</li> <li>906</li> </ul>

xx

ONTENTO	CONTENTS	
JNTENTS	CONTENTS	XXI
847	Foundation 24.2 – Attempts to Model the Origin of Life	913
847	Foundation 24.3 - Maxwell's Demon: Production of Entropy	919
848		
848	Glossary	922
850	A we are disease	
852	Appendices	928
853	Further Reading	0.25
853	Further Acaumg	937
854	Index	955
856		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
858		
858		
858		
859		
860		
861		
862		
865		
867		
871		
877		
880		
880		
880		
000		
881		
881		
881		
882		
885		
894		
895		
895		
895		
899		
903		
903		
904		
904		
905		
001		
906		