ADVANCES IN LASERS AND APPLICATIONS

Proceedings of the Fifty Second Scottish Universities Summer School in Physics, St. Andrews, September 1998.

Edited by

D M Finlayson — University of St. AndrewsB D Sinclair — University of St. Andrews

Series Editor

P Osborne — University of Edinburgh

Copublished by
Scottish Universities Summer School in Physics &
Institute of Physics Publishing, Bristol and Philadelphia

Contents

LASER SOURCES	
A review of diode-pumped lasers	1
Visible cw solid-state lasers	19
Fibre and waveguide lasers	39
Optical parametric oscillators (OPO)	61
Physics of ultrashort pulse generation	83
MATERIALS	
Materials for lasers and nonlinear optics	. 117
Periodically poled materials for nonlinear optics	141
APPLICATIONS	
$\begin{tabular}{ll} Medical lasers: fundamentals and applications$	181
Solid state lasers and nonlinear optics for LIDAR Peter F Moulton	227
Challenges for new laser sources in the defence industry	. 253
Lasers for interferometric gravitational wave detectors	. 271
Lasers in material processing	. 287
Applications of ultrashort pulse lasers	319
Presentations by participants	331
Participants' addresses	
Index	343