Nonlinear Waves, Solitons and Chaos

Eryk Infeld Institute for Nuclear Studies, Warsaw

George Rowlands

Department of Physics, University of Warwick

2nd edition

Contents

	Foreword to the first edition	<i>page</i> xi
	Foreword to the second edition	xiii
1	Introduction	1
1.1	Occurrence of nonlinear waves and instabilities in Nature	1
	1.1.1 Nonlinear phenomena in our everyday experience	1
	1.1.2 Nonlinear phenomena in the laboratory	3
1.2	Universal wave equations	5
	1.2.1 The Korteweg-de Vries and Kadomtsev-Petviashvili e	quations
	and a first look at solitons	5
	1.2.2 The nonlinear Schrödinger equation	8
	1.2.3 Nonlinear optics	9
1.3	What is a plasma?	9
1.4	Wave modes on a water surface	12
	1.4.1 Mathematical theory	12
	1.4.2 Comments	14
1.5	Linear stability analysis and its limitations	18
1.6		
	1.6.1 Coherent structures and pattern formation	22
1.7	Contents of Chapters 2–11	23
2	Linear waves and instabilities in infinite media	25
2.1	Introduction	25
2.2	Plasma waves	25
2.3	CMA diagrams	30
2.4	Instabilities	33
2.5	The Vlasov equation	37
2.6	Weak instabilities	43
	Exercises	47
3	Convective and non-convective instabilities; group velocity in unsta	able media 48
3.1	Introduction	48
3.2	Kinematics of unstable wavepackets	50

3.3 3.4	Moving coordinate systems Higher dimensional systems	54 56
3.4 3.5	Summary	57
5.5	Exercise	57
4	A first look at surface waves and instabilities	59
4.1	Introduction	59
4.2	Simple surface waves	61
4.3	The Rayleigh–Taylor instability	66
4.4	The Kelvin–Helmholtz instability	68
4.5	Solid-liquid interface instabilities	71
4.6	A first look at gravity wave instabilities	72
	4.6.1 The small amplitude onset of wave instability	73
	4.6.2 Further numerical results	75
4.7	Summary	81
	Exercises	81
5	Model equations for small amplitude waves and solitons; weakly	
	nonlinear theory	82
5.1	Introduction	82
	5.1.1 Some physical equations ask for surgery	82
	5.1.2 Examples	83
5.2	A few model equations as derived by introducing a small	
	parameter	85
	5.2.1 Shallow water, weak amplitude gravity waves	85
	5.2.2 Weak amplitude ion acoustic waves in an	
	unmagnetized plasma	89
	5.2.3 Weak amplitude ion acoustic waves in a magnetized	
	plasma	91
5.3	Weakly nonlinear waves	92
	5.3.1 Spreading, splitting and instabilities	92
	5.3.2 The story of deep water waves	98
	5.3.3 Mystery of the missing term	100
	5.3.4 Dynamics of a wavepacket	102
	5.3.5 Some generalizations	104
5.4	A general look at two families of model equations	107
5.5	A natural extension to finite amplitude waves due to Hayes	111
5.6		
	coupling	114
5.7	Concluding remarks	119
	Exercises	119
6	Exact methods for fully nonlinear waves and solitons	123
6.1	Introduction	123
6.2	Phase plane analysis and other methods	124

	6.2.1 One stationary wave in a dissipationless medium	124
	6.2.2 A two-fluid layer soliton pair	129
	6.2.3 Weak ion acoustic shock waves in a collisional plasma	132
	6.2.4 Solitons generated by laser fields	134
	6.2.5 Solitons and domains in dipole chains	136
	6.2.6 Discrete equations	139
6.3	Bernstein-Greene-Kruskal waves	143
	6.3.1 Statistical description of a plasma and BGK waves	144
	6.3.2 No trapped particles	145
	6.3.3 Various limits	146
	6.3.4 Trapped particle equilibria	147
	6.3.5 Stability; subsequent developments	150
6.4	Lagrangian methods	152
6.5	Lagrangian interpolation	159
	Exercises	164
7	Cartesian solitons in one and two space dimensions	166
7.1	Introduction	166
7.2	The direct method	168
7.3	Constants of motion	171
7.4	Inverse scattering method	173
7.5	Bäcklund transformations	175
7.6	Entr'acte	177
7.7	Breathers and boundary effects	178
7.8	Experimental evidence	180
7.9	Plane soliton interaction in two space dimensions	181
	7.9.1 Introducing the trace method	181
	7.9.2 One and two soliton solutions	183
	7.9.3 Some other developments and summary	188
7.10	Integrable equations in two space dimensions as treated by the	
	Zakharov–Shabat method	192
	7.10.1 Lax pairs and the PDEs they represent	193
	7.10.2 Extension to x, y, t	194
	7.10.3 How to proceed from the Lax pair to the general solution	195
	7.10.4 An example: the Kadomtsev–Petviashvili equation	196
7.11	Summary	199
	Exercises	200
8	Evolution and stability of initially one-dimensional waves and	
	solitons	202
8.1	A brief historical survey of large amplitude nonlinear wave	
	studies	202
	8.1.1 Solitons	204
	8.1.2 Water waves are unstable	206
	8.1.3 The geometrical optics limit	207

	8.1.4	More recent results	211
	8.1.5	What the remainder of Chapter 8 is about	212
8.2	Four me	ethods as illustrated by the nonlinear Klein–Gordon equation	213
	8.2.1	Whitham I	214
	8.2.2	Whitham II	219
	8.2.3	K expansion	220
	8.2.4	Hayes	223
8.3	Higher of	dimensional dynamics	224
	8.3.1	Kadomtsev–Petviashvili as analysed by Whitham II	224
	8.3.2	Various limits	230
	8.3.3	Common features of the weak amplitude and soliton limits for	
		$\psi = 0$	231
	8.3.4	Group velocity	233
	8.3.5		236
	8.3.6		244
8.4	A more	physical approach leading to an assessment of models	245
	8.4.1	Form of the waves considered	245
	8.4.2		246
	8.4.3		249
8.5	-	ics of nonlinear wave, shock and soliton solutions to the cubic	
		ar Schrödinger equation	252
	8.5.1		253
	8.5.2		254
	8.5.3		257
8.6		ect K method	258
	8.6.1	5	259
~ -	8.6.2		263
8.7		eneral conclusions and possible future lines of investigation	264
	Exercise	€S	265
9	Cylindri	ical and spherical solitons in plasmas and other media	268
9.1	Interest	in higher dimensional plasma solitons	268
9.2		ctional cylindrical and spherical ion acoustic solitons	269
	9.2.1	Model equations in non-Cartesian geometry	269
	9.2.2		269
	9.2.3	Spherical solitons	271
	9.2.4	Summary	272
9.3	Propert	ies of unidirectional soliton equations	272
	9.3.1	Integrability by inverse scattering	272
	9.3.2	Conservation laws	273
9.4	Soliton	solutions as compared with numerics and experiments	275
	9.4.1	Exact solutions to CI	277
	9.4.2	Initial value problem and experiments	277
	9.4.3	Reflection from the axis (centre)	280
	9.4.4	Models	284

	9.4.5 Stability of cylindrical solitons	287
9.5	Langmuir solitons	287
	9.5.1 Integrability	288
	9.5.2 Stability of Langmuir solitons	288
9.6	Interacting solitons and some conclusions	291
9.7	Epilogue. Some other examples of spherical and cylindrical solitons	292
	Exercises	294
10	Soliton metamorphosis	296
10.1	The next step in investigating soliton behaviour	296
10.2	Decay of line KPI solitons in two dimensions	297
10.3	Decay of 2D solitons in three dimensions	301
	10.3.1 2D solitons perturbed perpendicular to the motion	301
	10.3.2 2D solitons perturbed parallel to the velocity	302
10.4	Conclusions	303
	Exercises	303
11	Non-coherent phenomena	304
11.1	Introduction	304
11.2	Bifurcation sequences and chaos	311
11.3	Flows and maps	326
11.4	Strange attractors	329
11.5	Effect of external noise	340
11.6	Experimental evidence for strange attractors	341
11.7	Other theories of turbulence	343
11.8	Conclusions	344
	Exercises	345
	Appendices	346
A1	Parameter stretching as suggested by the linear dispersion relations	346
	A1.1 Ion acoustic waves in an unmagnetized plasma, $\Omega_c = 0$	346
	A1.2 Magnetized plasmas, $\Omega_c > 0$	347
A2	Relation between the trace method and the inverse scattering method	349
A3	Some formulae for perturbed nonlinear ion acoustic waves and solitons	351
	A3.1 No magnetic field	351
	A3.2 $\Omega_{\rm c} > 0$	352
A4	Colliding soliton theory	354
A5	A model equation for spherical solitons	356
A6	Stability calculation for 2D KPI soliton in 3D	358
	References	360
	Author index	379
	Subject index	387
	• 	

Colour plates between pages 300-301