
Introduction to
Automata Theory,
Languages, and Computation

Boston San Francisco New York

London Toronto Sydney Tokyo Singapore Madrid

Mexico City Munich Paris Cape Town Hong Kong Montreal

Table of Contents

1 Automata: The M e t h o d s and the Madness 1
1.1 Why Study Automata Theory? 2

1.1.1 Introduction to Finite Automata 2
1.1.2 Structural Representations 4
1.1.3 Automata and Complexity 5

1.2 Introduction to Formal Proof 5
1.2.1 Deductive Proofs 6
1.2.2 Reduction to Definitions 8
1.2.3 Other Theorem Forms 10
1.2.4 Theorems That Appear Not to Be If-Then Statements . . 13

1.3 Additional Forms of Proof 13
1.3.1 Proving Equivalences About Sets 14
1.3.2 The Contrapositive 14
1.3.3 Proof by Contradiction 16
1.3.4 Counterexamples 17

1.4 Inductive Proofs 19
1.4.1 Inductions on Integers 19
1.4.2 More General Forms of Integer Inductions 22
1.4.3 Structural Inductions 23
1.4.4 Mutual Inductions 26

1.5 The Central Concepts of Automata Theory 28
1.5.1 Alphabets 28
1.5.2 Strings 29
1.5.3 Languages 30
1.5.4 Problems 31

1.6 Summary of Chapter 1 34
1.7 References for Chapter 1 35

2 Finite Automata 37
2.1 An Informal Picture of Finite Automata 38

2.1.1 The Ground Rules 38
2.1.2 The Protocol 39
2.1.3 Enabling the Automata to Ignore Actions 41

vii

TABLE OF CONTENTS

2.1.4 The Entire System as an Automaton 43
2.1.5 Using the Product Automaton to Validate the Protocol . 45

2.2 Deterministic Finite Automata 45
2.2.1 Definition of a Deterministic Finite Automaton 46
2.2.2 How a DFA Processes Strings 46
2.2.3 Simpler Notations for DFA's 48
2.2.4 Extending the Transition Function to Strings 49
2.2.5 The Language of a DFA 52
2.2.6 Exercises for Section 2.2 53

2.3 Nondeterministic Finite Automata 55
2.3.1 An Informal View of Nondeterministic Finite Automata . 56
2.3.2 Definition of Nondeterministic Finite Automata 57
2.3.3 The Extended Transition Function 58
2.3.4 The Language of an NFA 59
2.3.5 Equivalence of Deterministic and Nondeterministic Finite

Automata 60
2.3.6 A Bad Case for the Subset Construction 65
2.3.7 Exercises for Section 2.3 66

2.4 An Application: Text Search 68
2.4.1 Finding Strings in Text 68
2.4.2 Nondeterministic Finite Automata for Text Search 69
2.4.3 A DFA to Recognize a Set of Keywords 70
2.4.4 Exercises for Section 2.4 72

2.5 Finite Automata With Epsilon-Transitions 72
2.5.1 Uses of б-Transitions 72
2.5.2 The Formal Notation for an e-NFA 74
2.5.3 Epsilon-Closures 75
2.5.4 Extended Transitions and Languages for e-NFA's 76
2.5.5 Eliminating e-Transitions 77
2.5.6 Exercises for Section 2.5 80

2.6 Summary of Chapter 2 80
2.7 References for Chapter 2 81

Regular Expressions and Languages 83
3.1 Regular Expressions 83

3.1.1 The Operators of Regular Expressions 84
3.1.2 Building Regular Expressions 85
3.1.3 Precedence of Regular-Expression Operators 88
3.1.4 Exercises for Section 3.1 89

3.2 Finite Automata and Regular Expressions 90
3.2.1 From DFA's to Regular Expressions 91
3.2.2 Converting DFA's to Regular Expressions by Eliminating

States 96
3.2.3 Converting Regular Expressions to Automata 101
3.2.4 Exercises for Section 3.2 106

TABLE OF CONTENTS ix

3.3 Applications of Regular Expressions 108
3.3.1 Regular Expressions in UNIX 108
3.3.2 Lexical Analysis 109
3.3.3 Finding Patterns in Text I l l
3.3.4 Exercises for Section 3.3 113

3.4 Algebraic Laws for Regular Expressions 114
3.4.1 Associativity and Commutativity 114
3.4.2 Identities and Annihilators 115
3.4.3 Distributive Laws 115
3.4.4 The Idempotent Law 116
3.4.5 Laws Involving Closures 117
3.4.6 Discovering Laws for Regular Expressions 117
3.4.7 The Test for a Regular-Expression Algebraic Law 119
3.4.8 Exercises for Section 3.4 120

3.5 Summary of Chapter 3 122
3.6 References for Chapter 3 122

4 Properties of Regular Languages 125
4.1 Proving Languages not to be Regular 126

4.1.1 The Pumping Lemma for Regular Languages 126
4.1.2 Applications of the Pumping Lemma 127
4.1.3 Exercises for Section 4.1 129

4.2 Closure Properties of Regular Languages 131
4.2.1 Closure of Regular Languages Under Boolean Operations 131
4.2.2 Reversal 137
4.2.3 Homomorphisms 139
4.2.4 Inverse Homomorphisms 140
4.2.5 Exercises for Section 4.2 145

4.3 Decision Properties of Regular Languages 149
4.3.1 Converting Among Representations 149
4.3.2 Testing Emptiness of Regular Languages 151
4.3.3 Testing Membership in a Regular Language 153
4.3.4 Exercises for Section 4.3 153

4.4 Equivalence and Minimization of Automata 154
4.4.1 Testing Equivalence of States 154
4.4.2 Testing Equivalence of Regular Languages 157
4.4.3 Minimization of DFA's 159
4.4.4 Why the Minimized DFA Can't Be Beaten 162
4.4.5 Exercises for Section 4.4 164

4.5 Summary of Chapter 4 165
4.6 References for Chapter 4 166

TABLE OF CONTENTS

5 Context-Free Grammars and Languages 169
5.1 Context-Free Grammars 169

5.1.1 An Informal Example 170
5.1.2 Definition of Context-Free Grammars 171
5.1.3 Derivations Using a Grammar 173
5.1.4 Leftmost and Rightmost Derivations 175
5.1.5 The Language of a Grammar 177
5.1.6 Sentential Forms 178
5.1.7 Exercises for Section 5.1 179

5.2 Parse Trees 181
5.2.1 Constructing Parse Trees 181
5.2.2 The Yield of a Parse Tree 183
5.2.3 Inference, Derivations, and Parse Trees 184
5.2.4 From Inferences to Trees 185
5.2.5 From Trees to Derivations 187
5.2.6 From Derivations to Recursive Inferences 190
5.2.7 Exercises for Section 5.2 191

5.3 Applications of Context-Free Grammars 191
5.3.1 Parsers 192
5.3.2 The YACC Parser-Generator 194
5.3.3 Markup Languages 196
5.3.4 XML and Document-Type Definitions 198
5.3.5 Exercises for Section 5.3 204

5.4 Ambiguity in Grammars and Languages 205
5.4.1 Ambiguous Grammars 205
5.4.2 Removing Ambiguity From Grammars 207
5.4.3 Leftmost Derivations as a Way to Express Ambiguity . . 211
5.4.4 Inherent Ambiguity 212
5.4.5 Exercises for Section 5.4 214

5.5 Summary of Chapter 5 215
5.6 References for Chapter 5 216

6 Pushdown Automata 219
6.1 Definition of the Pushdown Automaton 219

6.1.1 Informal Introduction 219
6.1.2 The Formal Definition of Pushdown Automata 221
6.1.3 A Graphical Notation for PDA's 223
6.1.4 Instantaneous Descriptions of a PDA 224
6.1.5 Exercises for Section 6.1 228

6.2 The Languages of a PDA 229
6.2.1 Acceptance by Final State 229
6.2.2 Acceptance by Empty Stack 230
6.2.3 From Empty Stack to Final State 231
6.2.4 From Final State to Empty Stack 234
6.2.5 Exercises for Section 6.2 236

TABLE OF CONTENTS xi

6.3 Equivalence of PDA's and CFG's 237
6.3.1 From Grammars to Pushdown Automata 237
6.3.2 From PDA's to Grammars 241
6.3.3 Exercises for Section 6.3 245

6.4 Deterministic Pushdown Automata 246
6.4.1 Definition of a Deterministic PDA 247
6.4.2 Regular Languages and Deterministic PDA's 247
6.4.3 DPDA's and Context-Free Languages 249
6.4.4 DPDA's and Ambiguous Grammars 249
6.4.5 Exercises for Section 6.4 251

6.5 Summary of Chapter 6 252
6.6 References for Chapter 6 253

7 Properties of Context-Free Languages 255
7.1 Normal Forms for Context-Free Grammars 255

7.1.1 Eliminating Useless Symbols 256
7.1.2 Computing the Generating and Reachable Symbols 258
7.1.3 Eliminating e-Productions 259
7.1.4 Eliminating Unit Productions 262
7.1.5 Chomsky Normal Form 266
7.1.6 Exercises for Section 7.1 269

7.2 The Pumping Lemma for Context-Free Languages 274
7.2.1 The Size of Parse Trees 274
7.2.2 Statement of the Pumping Lemma 275
7.2.3 Applications of the Pumping Lemma for CFL's 276
7.2.4 Exercises for Section 7.2 280

7.3 Closure Properties of Context-Free Languages 281
7.3.1 Substitutions 282
7.3.2 Applications of the Substitution Theorem 284
7.3.3 Reversal 285
7.3.4 Intersection With a Regular Language 285
7.3.5 Inverse Homomorphism 289
7.3.6 Exercises for Section 7.3 291

7.4 Decision Properties of CFL's 293
7.4.1 Complexity of Converting Among CFG's and PDA's . . . 294
7.4.2 Running Time of Conversion to Chomsky Normal Form . 295
7.4.3 Testing Emptiness of CFL's 296
7.4.4 Testing Membership in a CFL 298
7.4.5 Preview of Undecidable CFL Problems 302
7.4.6 Exercises for Section 7.4 302

7.5 Summary of Chapter 7 303
7.6 References for Chapter 7 304

XU TABLE OF CONTENTS

8 Introduction to Turing Machines 307
8.1 Problems That Computers Cannot Solve 307

8.1.1 Programs that Print "Hello, World" 308
8.1.2 The Hypothetical "Hello, World" Tester 310
8.1.3 Reducing One Problem to Another 313
8.1.4 Exercises for Section 8.1 316

8.2 The Turing Machine 316
8.2.1 The Quest to Decide All Mathematical Questions 317
8.2.2 Notation for the Turing Machine 318
8.2.3 Instantaneous Descriptions for Turing Machines 320
8.2.4 Transition Diagrams for Turing Machines 323
8.2.5 The Language of a Turing Machine 326
8.2.6 Turing Machines and Halting 327
8.2.7 Exercises for Section 8.2 328

8.3 Programming Techniques for Turing Machines 329
8.3.1 Storage in the State 330
8.3.2 Multiple Tracks 331
8.3.3 Subroutines 333
8.3.4 Exercises for Section 8.3 334

8.4 Extensions to the Basic Turing Machine 336
8.4.1 Multitape Turing Machines 336
8.4.2 Equivalence of One-Tape and Multitape TM's 337
8.4.3 Running Time and the Many-Tapes-to-One Construction 339
8.4.4 Nondeterministic Turing Machines 340
8.4.5 Exercises for Section 8.4 342

8.5 Restricted Turing Machines 345
8.5.1 Turing Machines With Semi-infinite Tapes 345
8.5.2 Multistack Machines 348
8.5.3 Counter Machines 351
8.5.4 The Power of Counter Machines 352
8.5.5 Exercises for Section 8.5 354

8.6 Turing Machines and Computers 355
8.6.1 Simulating a Turing Machine by Computer 355
8.6.2 Simulating a Computer by a Turing Machine 356
8.6.3 Comparing the Running Times of Computers and Turing

Machines 361
8.7 Summary of Chapter 8 363
8.8 References for Chapter 8 365

9 Undecidability 367
9.1 A Language That Is Not Recursively Enumerable 368

9.1.1 Enumerating the Binary Strings 369
9.1.2 Codes for Turing Machines 369
9.1.3 The Diagonalization Language 370
9.1.4 Proof that Ld is not Recursively Enumerable 372

TABLE OF CONTENTS xiii

9.1.5 Exercises for Section 9.1 372
9.2 An Undecidable Problem That is RE 373

9.2.1 Recursive Languages 373
9.2.2 Complements of Recursive and RE languages 374
9.2.3 The Universal Language 377
9.2.4 Undecidability of the Universal Language 379
9.2.5 Exercises for Section 9.2 381

9.3 Undecidable Problems About Turing Machines 383
9.3.1 Reductions 383
9.3.2 Turing Machines That Accept the Empty Language . . . 384
9.3.3 Rice's Theorem and Properties of the RE Languages . . . 387
9.3.4 Problems about Turing-Machine Specifications 390
9.3.5 Exercises for Section 9.3 390

9.4 Post's Correspondence Problem 392
9.4.1 Definition of Post's Correspondence Problem 392
9.4.2 The "Modified" PCP 394
9.4.3 Completion of the Proof of PCP Undecidability 397
9.4.4 Exercises for Section 9.4 403

9.5 Other Undecidable Problems 403
9.5.1 Problems About Programs 403
9.5.2 Undecidability of Ambiguity for CFG's 404
9.5.3 The Complement of a List Language 406
9.5.4 Exercises for Section 9.5 409

9.6 Summary of Chapter 9 410
9.7 References for Chapter 9 411

10 Intractable Problems 413
10.1 The Classes V and MV 414

10.1.1 Problems Solvable in Polynomial Time 414
10.1.2 An Example: Kruskal's Algorithm 414
10.1.3 Nondeterministic Polynomial Time 419
10.1.4 An MV Example: The Traveling Salesman Problem . . . 419
10.1.5 Polynomial-Time Reductions 421
10.1.6 NP-Complete Problems 422
10.1.7 Exercises for Section 10.1 423

10.2 An NP-Complete Problem 426
10.2.1 The Satisfiability Problem 426
10.2.2 Representing SAT Instances 427
10.2.3 NP-Completeness of the SAT Problem 428
10.2.4 Exercises for Section 10.2 434

10.3 A Restricted Satisfiability Problem 435
10.3.1 Normal Forms for Boolean Expressions 436
10.3.2 Converting Expressions to CNF 437
10.3.3 NP-Completeness of CSAT 440
10.3.4 NP-Completeness of 3SAT 445
10.3.5 Exercises for Section 10.3 446

xiv TABLE OF CONTENTS

10.4 Additional NP-Complete Problems 447
10.4.1 Describing NP-complete Problems 447
10.4.2 The Problem of Independent Sets 448
10.4.3 The Node-Cover Problem 452
10.4.4 The Directed Hamilton-Circuit Problem 453
10.4.5 Undirected Hamilton Circuits and the TSP 460
10.4.6 Summary of NP-Complete Problems 461
10.4.7 Exercises for Section 10.4 462

10.5 Summary of Chapter 10 466
10.6 References for Chapter 10 467

11 Additional Classes of Problems 469
11.1 Complements of Languages in MV 470

11.1.1 The Class of Languages Со-ЛЛР 470
11.1.2 NP-Complete Problems and Co-MV 471
11.1.3 Exercises for Section 11.1 472

11.2 Problems Solvable in Polynomial Space 473
11.2.1 Polynomial-Space Turing Machines 473
11.2.2 Relationship of VS and MVS to Previously Defined Classes474
11.2.3 Deterministic and Nondeterministic Polynomial Space . . 476

11.3 A Problem That Is Complete for VS 478
11.3.1 PS-Completeness 478
11.3.2 Quantified Boolean Formulas 479
11.3.3 Evaluating Quantified Boolean Formulas 480
11.3.4 PS-Completeness of the QBF Problem 482
11.3.5 Exercises for Section 11.3 487

11.4 Language Classes Based on Randomization 487
11.4.1 Quicksort: an Example of a Randomized Algorithm . . .488
11.4.2 A Turing-Machine Model Using Randomization 489
11.4.3 The Language of a Randomized Turing Machine 490
11.4.4 The Class VJP 492
11.4.5 Recognizing Languages in VJP 494
11.4.6 The Class ZVV 495
11.4.7 Relationship Between VJV and ZVV 496
11.4.8 Relationships to the Classes V and MV 497

11.5 The Complexity of Primality Testing 498
11.5.1 The Importance of Testing Primality 499
11.5.2 Introduction to Modular Arithmetic 501
11.5.3 The Complexity of Modular-Arithmetic Computations . . 503
11.5.4 Random-Polynomial Primality Testing 504
11.5.5 Nondeterministic Primality Tests 505
11.5.6 Exercises for Section 11.5 508

11.6 Summary of Chapter 11 508
11.7 References for Chapter 11 510

Index 513

