RAPID PROTOTYPING OF DIGITAL SYSTEMS Second Edition

A Tutorial Approach

James O. Hamblen Georgia Institute of Technology

Michael D. Furman Georgia Institute of Technology

KLUWER ACADEMIC PUBLISHERS Boston / Dordrecht / London

RAPID PROTOTYPING OF DIGITAL SYSTEMS SECOND EDITION

Table of Contents

l Tu	torial I: The 15 Minute Design	2
1.1	Design Entry using the Graphic Editor	6
1.2	Compiling the Design	9
1.3	Simulation of the Design	10
1.4	Downloading Your Design to the UP 1 or UP 1X Board	12
1.5	The 10 Minute VHDL Entry Tutorial	14
1.6	Compiling the VHDL Design	17
1.7	The 10 Minute Verilog Entry Tutorial	17
1.8	Compiling the Verilog Design	21
1.9	Timing Analysis	22
1.10	The Floorplan Editor	23
1.11	Symbols and Hierarchy	24
1.12	Functional Simulation	24
1.13	For additional information	25
1.14	Laboratory Exercises	25
2 Th	e Altera UP 1 and UP 1X CPLD Boards	30
2.1	Programming Jumpers	31
2.2	MAX 7000 Device and UP 1 I/O Features	31
2.3	MAX and FLEX Seven-segment LED Displays	31
2.4	FLEX 10K Device and UP 1 I/O Features	34
2.5	Obtaining a UP 1 or UP 1X Board and Power Supply	36
3 Pr	ogrammable Logic Technology	38
3.1	CPLDs and FPGAs	41
3.2	Altera MAX 7000S Architecture – A Product Term CPLD Device	42
3.3	Altera FLEX 10K Architecture – A Look-Up Table CPLD Device	43
3.4	Xilinx 4000 Architecture – A Look-Un Table FPGA Device	47

3.5	Computer Aided Design Tools for Programmable Logic	49
3.6	Next Generation FPLD CAD tools	50
3.7	Applications of FPLDs	50
3.8	Features of New Generation FPLDs	50
3.9	For additional information	51
3.10	Laboratory Exercises	52
4 Ti	utorial II: Sequential Design and Hierarchy	5
4.1	Install the Tutorial Files and UP1core Library	54
4.2	Open the tutor2 Schematic	54
4.3	Browse the Hierarchy	56
4.4	Using Buses in a Schematic	57
4.5	Testing the Pushbutton Counter and Displays	58
4.6	Testing the Initial Design on the UP 1 Board	59
4.7	Fixing the Switch Contact Bounce Problem	60
4.8	Testing the Modified Design on the UP 1 Board.	61
4.9	Laboratory Exercises	61
5 U.	P1core Library Functions	t
5.1	UP1core DEC_7SEG: Hex to Seven-segment Decoder	67
5.2	UP1core Debounce: Pushbutton Debounce	68
5.3	UP1core OnePulse: Pushbutton Single Pulse	69
5.4	UP1core Clk_Div: Clock Divider	70
5.5	UP1core VGA_Sync: VGA Video Sync Generation	71
5.6	UP1core CHAR_ROM: Character Generation ROM	73
5.7	UP1core Keyboard: Read Keyboard Scan Code	74
5.8	UP1core Mouse: Mouse Cursor	75
6 U	sing VHDL for Synthesis of Digital Hardware	7
6.1	VHDL Data Types	78
6.2	VHDL Operators	79
6.3	VHDL Based Synthesis of Digital Hardware	80
6.4	VHDL Synthesis Models of Gate Networks	80
6.5	VHDL Synthesis Model of a Seven-segment LED Decoder	81
6.6	VHDL Synthesis Model of a Multiplexer	83
6.7	VHDL Synthesis Model of Tri-State Output	84

3.5	Computer Aided Design Tools for Programmable Logic	49
3.6	Next Generation FPLD CAD tools	50
3.7	Applications of FPLDs	50
3.8	Features of New Generation FPLDs	50
3.9	For additional information	51
3.10	Laboratory Exercises	52
4 Ti	itorial II: Sequential Design and Hierarchy	54
4.1	Install the Tutorial Files and UP1core Library	54
4.2	Open the tutor2 Schematic	54
4.3	Browse the Hierarchy	56
4.4	Using Buses in a Schematic	57
4.5	Testing the Pushbutton Counter and Displays	58
4.6	Testing the Initial Design on the UP 1 Board	59
4.7	Fixing the Switch Contact Bounce Problem	60
4.8	Testing the Modified Design on the UP 1 Board.	61
4.9	Laboratory Exercises	61
5 U.	P1core Library Functions	66
5.1	UP1core DEC_7SEG: Hex to Seven-segment Decoder	67
5.2	UP1core Debounce: Pushbutton Debounce	68
5.3	UP1core OnePulse: Pushbutton Single Pulse	69
5.4	UP1core Clk_Div: Clock Divider	70
5.5	UP1core VGA_Sync: VGA Video Sync Generation	71
5.6	UP1core CHAR_ROM: Character Generation ROM	73
5.7	UP1core Keyboard: Read Keyboard Scan Code	74
5.8	UP1core Mouse: Mouse Cursor	75
6 U	sing VHDL for Synthesis of Digital Hardware	78
6.1	VHDL Data Types	78
6.2	VHDL Operators	79
6.3	VHDL Based Synthesis of Digital Hardware	80
6.4	VHDL Synthesis Models of Gate Networks	80
6.5	VHDL Synthesis Model of a Seven-segment LED Decoder	81
6.6	VHDL Synthesis Model of a Multiplexer	
6.7	VHDL Synthesis Model of Tri-State Output	84

6.8	VHDL Synthesis Models of Flip-flops and Registers	84
6.9	Accidental Synthesis of Inferred Latches	86
6.10	VHDL Synthesis Model of a Counter	86
6.11	VHDL Synthesis Model of a State Machine	87
6.12	VHDL Synthesis Model of an ALU with an Adder/Subtractor and a Shifter	89
6.13	VHDL Synthesis of Multiply and Divide Hardware	90
6.14	VHDL Synthesis Models for Memory	91
6.15	Hierarchy in VHDL Synthesis Models	94
6.16	Using a Testbench for Verification	96
6.17	For additional information	97
6.18	Laboratory Exercises	97
7 Si	tate Machine Design: The Electric Train Controller	102
7.1	The Train Control Problem	_102
7.2	Track Power (T1, T2, T3, and T4)	_104
7.3	Track Direction (DA1-DA0, and DB1-DB0)	_104
7.4	Switch Direction (SW1, SW2, and SW3)	_105
7.5	Train Sensor Input Signals (S1, S2, S3, S4, and S5)	_105
7.6	An Example Controller Design	_106
7.7	VHDL Based Example Controller Design	_110
7.8	Simulation Vector file for State Machine Simulation	_112
7.9	Running the Train Control Simulation	_115
7.10	Running the Video Train System (After Successful Simulation)	_116
7.11	Laboratory Exercises	_117
8 A	Simple Computer Design: The µP 1	122
8.1	Computer Programs and Instructions	_123
8.2	The Processor Fetch, Decode and Execute Cycle	_124
8.3	VHDL Model of the μP 1	_131
8.4	Simulation of the µP1 Computer	_134
8.5	Laboratory Exercises	_135
9 V	GA Video Display Generation	140
9.1	Video Display Technology	_140
9.2	Video Refresh	_140
9.3	Using a CPLD for VGA Video Signal Generation	_143

		144
9.4	A VHDL Sync Generation Example: UPIcore VGA_SYNC	144
9.5	Final Output Register for Video Signals	146
9.6	Required Pin Assignments for Video Output	146
9.7	Video Examples	147
9.8	A Character Based Video Design	147
9.9	Character Selection and Fonts	148
9.10	VHDL Character Display Design Examples	151
9.11	A Graphics Memory Design Example	153
9.12	Video Data Compression	154
9.13	Video Color Mixing using Dithering	155
9.14	VHDL Graphics Display Design Example	155
9.15	Laboratory Exercises	157
10 Co	ommunications: Interfacing to the PS/2 Keyboard	160
10.1	PS/2 Port Connections	160
10.2	Keyboard Scan Codes	161
10.3	Make and Break Codes	161
10.4	The PS/2 Serial Data Transmission Protocol	161
10.5	Scan Code Set 2 for the PS/2 Keyboard	164
10.6	The Keyboard UP1core	166
10.7	A Design Example Using the Keyboard UP1core	169
10.8	For Additional Information	170
10.9	Laboratory Exercises	170
11 Ca	mmunications: Interfacing to the PS/2 Mouse	172
11.1	The Mouse UP1core	174
11.2	Mouse Initialization	174
11.3	Mouse Data Packet Processing	175
11.4	An Example Design Using the Mouse UP1core	176
11.5	For Additional Information	176
11.6	Laboratory Exercises	176
12 Ro	obotics: The UP1-bot	178
12.1	The UP1-bot Design	178
12.2	UP1-bot Servo Drive Motors	178
12.3	Modifying the Servos to make Drive Motors	179

12.4 VHDL Servo Driver Code for the UP1-bot	180
12.5 Sensors for the UP1-bot	182
12.6 Assembly of the UP1-bot Body	190
12.7 UP1-bot FLEX Expansion B Header Pins	
12.8 An Alternative UP 1 Robot Project Based on an R/C C	ar 198
12.9 For Additional Information	203
12.10 Laboratory Exercises	204
13 A RISC Design: Synthesis of the MIPS Processo	or Core 210
13.1 The MIPS Instruction Set and Processor	210
13.2 Using VHDL to Synthesize the MIPS Processor Core _	213
13.3 The Top-Level Module	214
13.4 The Control Unit	217
13.5 The Instruction Fetch Stage	219
13.6 The Decode Stage	222
13.7 The Execute Stage	224
13.8 The Data Memory Stage	226
13.9 Simulation of the MIPS Design	227
13.10 MIPS Hardware Implementation on the UP 1 or UP 13	K Board 228
13.11 For Additional Information	229
13.12 Laboratory Exercises	230
Appendix A: Generation of Pseudo Random Binary	Sequences235
Appendix B: MAX+PLUS II Design and Data File	Extensions237
Appendix C: UP 1 and UP 1X Pin Assignments	239
Appendix D: The Wintim Meta Assembler	243
Annendix F. An Introduction to Verilog for VHDI	
Appenaix E: An Introduction to veryog for vHDL users	
Glossary	
Index	
About the Accompanying CD-ROM	270