Ulrich Eisele

Introduction to Polymer Physics

With 148 Figures

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong

Table of Contents

Part I	The Mechanics of Linear Deformation of Polymers	
1	Object and Aims of Polymer Physics	3
2 2.1	Mechanical Relaxation in Polymers	5 5
2.1.1	Stress and Strain Tensors	5
2.1.2	Basic Laws of Continuum Mechanics	5
2.2	Relaxation and Creep Experiments on Polymers	8
2.2.1	Creep Experiment	8
2.2.2	Relaxation Experiment	9
2.2.3	Basic Law for Relaxation and Creep	10
2.3	Dynamic Relaxation Experiments	11
2.4	Technical Measures for Damping	12
2.4.1	Energy Dissipation Under Defined Load Conditions	12
2.4.2	Rebound Elasticity	15
3	Simple Phenomenological Models	17
3.1	Maxwell's Model	17
3.2	Kelvin-Voigt Model	18
3.3	Relaxation and Retardation Spectra	20
3.4	Approximate Determination of Relaxation Spectra	22
3.4.1	Method of Schwarzl and Stavermann	22
3.4.2	Method According to Ferry and Williams	24
4	Molecular Models of Relaxation Behavior	26
4.1	Simple Jump Model	26
4.2	Change of Position in Terms of a Potential Model	27
4.3	Viscosity in Terms of the Simple Jump Model	29
4.4	Determining the Energy of Activation by Experiment	30
4.5	Kink Model	32
5	Glass Transition	35
5.1	Thermodynamic Description	35
5.2	Free Volume Theory	36
5.3	Williams, Landel and Ferry Relationship	38
5.4	Time-Temperature Superposition Principle	40
5.5	Increment Method for the Determination of the Glass Transition	
	Temperature	43

5.6 5.7 5.8	Glass Transitions of Copolymers Dependence of T _g on Molar Mass Empirical Correlations Between Molecular Parameters and Glass	45 47
5.9 5.10 5.11	Plasticizer Crosslinking	48 52 53 55
6 6.1 6.2 6.3 6.4 6.5	Flow and Rubber Elasticity in Polymer Melts Flow as a Relaxation Process Structural Models for Polymer Melts Bueche-Rouse Model Rouse Theory of Flow in Low Molar Mass Polymer Melts Extension of the Rouse Theory to Large Molar Mass	56 56 57 59 60
6.6 6.6.1 6.6.2 6.6.3 6.7	Relaxation Processes According to the Meander Model Rubber Elasticity Flow	65 66 69 69 72
Part II	Crystallization and Melting of Polymers	
7 7.1 7.2 7.3 7.4 8	Crystallization Behavior Polymer Crystals and Growth Forms Crystalline Structures in Stretched Polymers Nucleation Crystal Growth Melting Behavior Fauilibrium Thermodynamics	79 79 84 86 87 91
7 7.1 7.2 7.3 7.4 8 8.1 8.2 8.3 8.3.1 8.3.2	Crystallization Behavior Polymer Crystals and Growth Forms Crystalline Structures in Stretched Polymers Nucleation Crystal Growth Melting Behavior Equilibrium Thermodynamics Influence of Crystallite Size Entropy Effects Stress Crystallization Entropy of Mixing	79 79 84 86 87 91 91 92 93 93 93
7 7.1 7.2 7.3 7.4 8 8.1 8.2 8.3 8.3.1 8.3.2 Part III	Crystallization Behavior Polymer Crystals and Growth Forms Crystalline Structures in Stretched Polymers Nucleation Crystal Growth Melting Behavior Equilibrium Thermodynamics Influence of Crystallite Size Entropy Effects Stress Crystallization Entropy of Mixing Non-linear Deformation Behavior of Polymers	79 79 84 86 87 91 91 92 93 93 93 95
7 7.1 7.2 7.3 7.4 8 8.1 8.2 8.3 8.3.1 8.3.2 Part III 9 9.1 9.2 9.3 9.4	Crystallization Behavior . Polymer Crystals and Growth Forms . Crystalline Structures in Stretched Polymers . Nucleation . Crystal Growth . Melting Behavior . Equilibrium Thermodynamics . Influence of Crystallite Size . Entropy Effects . Stress Crystallization . Entropy of Mixing . Non-linear Deformation Behavior of Polymers Mechanism of Deformation of Thermoplastics and Multi-component Systems . Terminology . Crazing . Shear Deformation . Deformation Mechanisms in Partially Crystalline Thermoplastics	79 79 84 86 87 91 92 93 93 95 99 99 99 100 104 105

10.2	Statistics of the Segment Model	111
10.3	Statistics of Chains with Free Rotation Around Their Bond Angles	113
10.4	Statistics of a Covalent Chain with Hindered Rotation	
	Around the Bonds	115
10.5	Statistical Theory of Rubber Elasticity	117
10.6	Stress-Strain Relationships for Different Types of Applied Stress.	122
10.6.1	Uniaxial Tension or Compression	122
10.6.2	Biaxial Elongation	122
10.6.3	Simple Shear	123
10.7	Phantom Networks	124
10.8	Mooney-Rivlin Theory	125
10.9	Non-Gaussian Chain Statistics and Network Theory	130
10.10	Van der Waals Theory of Networks	133
10.11	Photoelastic Properties of Elastomers	135
11	Tear Formation and Propagation in Elastomers	138
11.1	Concept of Tearing Energy According to Rivlin	138
11.1.1	Trousers Test Piece	139
11.1.2	Tensile Strip with a Small Cut	140
11.1.3	"Pure shear" Test Piece	141
11.2	Elastic Energy Density in an Elastomer	142
11.3	Fatigue Crack Propagation Under Dynamic Load	143
12	Deformation Behavior of Thermoplastic Elastomers	147
12.1	Structural Principles	147
12.2	Polyurethane Elastomers	148
12.3	Block Copolymers	149
12.4	Thermoplastic Elastomers Based on Polymer Mixtures	152
12.5	Tension Set	154
Part IV	Mixing and Swelling of Polymers	
13	Compatibility of Polymers	159
13.1	Basic Theoretical Considerations	159
13.2	Flory-Huggins Theory	161
13.3	Development of the Flory-Huggins Theory to a Description	
	of Polymer Mixtures	164
13.4	Solubility Parameter	164
13 5	Experimental Methods for Determining Miscibility	167

13.5	Experimental Methods for Determining Miscibility	167
14	Network Swelling	173
15	Environmental Stress Cracking of Polymeric Materials	177