
Modern Control Engineering Fourth Edition

Katsuhiko Ogata

University of Minnesota

Prentice Hall, Upper Saddle River, New Jersey 07458

Contents

Prefa	ce	ix
Chap	ter 1 Introduction to Control Systems	1
1–1	Introduction 1	
1–2	Examples of Control Systems 3	
1–3	Closed-Loop Control versus Open-Loop Control 6	
1–4	Outline of the Book 8	
Chap	ter 2 The Laplace Transform	9
2–1	Introduction 9	
2–2	Review of Complex Variables and Complex Functions 10	
2–3	Laplace Transformation 13	
24	Laplace Transform Theorems 23	
2–5	Inverse Laplace Transformation 32	
2–6	Partial-Fraction Expansion with MATLAB 36	
2–7	Solving Linear, Time-Invariant, Differential Equations 40	
	Example Problems and Solutions 42	
	Problems 51	

Chap	ter 3 Mathematical Modeling of Dynamic Systems	53
3–1	Introduction 53	
3–2	Transfer Function and Impulse-Response Function 55	
3–3	Automatic Control Systems 58	
3–4	Modeling in State Space 70	
3–5	State-Space Representation of Dynamic Systems 76	
3–6	Transformation of Mathematical Models with MATLAB 83	
3–7	Mechanical Systems 85	
3–8	Electrical and Electronic Systems 90	
3–9	Signal Flow Graphs 104	
3–10	Linearization of Nonlinear Mathematical Models 112	
	Example Problems and Solutions 115	
	Problems 146	
Chap	ter 4 Mathematical Modeling of Fluid Systems and Thermal Systems	152
4–1	Introduction 152	
4–2	Liquid-Level Systems 153	
4–3	Pneumatic Systems 158	
4-4	Hydraulic Systems 175	
4–5	Thermal Systems 188	
	Example Problems and Solutions 192	
	Problems 211	
Chap	ter 5 Transient and Steady-State Response Analyses	219
5–1	Introduction 219	
5–2	First-Order Systems 221	
5–3	Second-Order Systems 224	
5–4	Higher-Order Systems 239	
5–5	Transient-Response Analysis with MATLAB 243	
5–6	An Example Problem Solved with MATLAB 271	
5–7	Routh's Stability Criterion 275	
5–8	Effects of Integral and Derivative Control Actions on System Performance 281	
5–9	Steady-State Errors in Unity-Feedback Control Systems288Example Problems and Solutions294	

Contents

Chap	oter 6 Root-Locus Analysis	337
6–1	Introduction 337	
6–2	Root-Locus Plots 339	
6–3	Summary of General Rules for Constructing Root Loci 351	
6–4	Root-Locus Plots with MATLAB 358	
6–5	Positive-Feedback Systems 373	
6–6	Conditionally Stable Systems 378	
6–7	Root Loci for Systems with Transport Lag 379	
	Example Problems and Solutions 384	
	Problems 413	
Chap	oter 7 Control Systems Design by the Root-Locus Method	416
7–1	Introduction 416	
7–2	Preliminary Design Considerations 419	
7–3	Lead Compensation 421	
7–4	Lag Compensation 429	
7–5	Lag–Lead Compensation 439	
7–6	Parallel Compensation 451	
	Example Problems and Solutions 456	
	Problems 488	
Chap	oter 8 Frequency-Response Analysis	492
8–1	Introduction 492	
8–2	Bode Diagrams 497	
8–3	Plotting Bode Diagrams with MATLAB 516	
8-4	Polar Plots 523	

- 8–4 Polar Plots 523
- 8-5 Drawing Nyquist Plots with MATLAB 531
- 8-6 Log-Magnitude-versus-Phase Plots 539
- 8–7 Nyquist Stability Criterion 540
- 8–8 Stability Analysis 550
- 8–9 Relative Stability 560
- 8–10 Closed-Loop Frequency Response of Unity-Feedback Systems 575
- 8–11 Experimental Determination of Transfer Functions 584
 Example Problems and Solutions 589
 Problems 612

Chapter 9 Control Systems Design by Frequency Response

9–1	Introduction 618
9–2	Lead Compensation 621
9–3	Lag Compensation 630
9–4	Lag–Lead Compensation 639
9–5	Concluding Comments 645
	Example Problems and Solutions 648
	Problems 679
	ter 10 PID Controls and Two-Degrees-of-Freedom
Chap	oter 10 PID Controls and Two-Degrees-of-Freedom Control Systems
	5
10–1	Control Systems
10–1 10–2	Control Systems Introduction 681
10–1 10–2 10–3	Control SystemsIntroduction681Tuning Rules for PID Controllers682Computational Approach to Obtain Optimal Sets of Parameter
10–1 10–2 10–3 10–4	Control SystemsIntroduction681Tuning Rules for PID Controllers682Computational Approach to Obtain Optimal Sets of ParameterValues692
10-1 10-2 10-3 10-4 10-5	Control SystemsIntroduction681Tuning Rules for PID Controllers682Computational Approach to Obtain Optimal Sets of ParameterValues692Modifications of PID Control Schemes700
10-1 10-2 10-3 10-4 10-5	Control SystemsIntroduction681Tuning Rules for PID Controllers682Computational Approach to Obtain Optimal Sets of Parameter Values692Modifications of PID Control Schemes700Two-Degrees-of-Freedom Control703Zero-Placement Approach to Improve703
10-1 10-2 10-3 10-4 10-5	Control SystemsIntroduction681Tuning Rules for PID Controllers682Computational Approach to Obtain Optimal Sets of Parameter Values692Modifications of PID Control Schemes700Two-Degrees-of-Freedom Control703Zero-Placement Approach to Improve Response Characteristics705

Chapter 11 Analysis of Control Systems in State Space

11–1	Introduction 752	
11–2	State-Space Representations of Transfer-Function Systems	753
11–3	Transformation of System Models with MATLAB 760	
11–4	Solving the Time-Invariant State Equation 764	
11–5	Some Useful Results in Vector-Matrix Analysis 772	
11–6	Controllability 779	
11–7	Observability 786	
	Example Problems and Solutions 792	
	Problems 824	

Contents

681

752

Chapter 12 Design of Control Systems in State Space

12–1	Introduction 826	
12–2	Pole Placement 827	
12–3	Solving Pole-Placement Problems with MATLAB 839	
12–4	Design of Servo Systems 843	
12–5	State Observers 855	
12–6	Design of Regulator Systems with Observers 882	
12–7	Design of Control Systems with Observers 890	
12-8	Quadratic Optimal Regulator Systems 897	
	Example Problems and Solutions 910	
	Problems 948	
References		

Index

952 956

826