ROBERT CALLAN

NEURONALE NETZE

IM KLARTEXT

ein Imprint von Pearson Education

München • Boston • San Francisco • Harlow, England Don Mills, Ontario • Sydney • Mexico City Madrid • Amsterdam

NEURONALE NETZE

IM KLARTEXT

INHALTSVERZEICHNIS

	VORWORT ZUR DEUTSCHEN AUSGABE	9
	VORWORT	11
	DANKSAGUNG	13
KAPITEL 1	EINFÜHRUNG	15
1.1	Einführung	15
1.2	Die Basiskomponenten	17
1.3	Trainieren eines neuronalen Netzes	27
1.4	Ein einfaches Trainingsbeispiel	28
1.5	Zusammenfassung	32
1.6	Weiterführende Literatur	32
1.7	Übungen	33
KAPITEL 2	KLASSIFIZIEREN VON MUSTERN	35
2.1	Anwendungen	35
2.2	Grundlagen	36
2.3	Lineare und nichtlineare Probleme	43
2.4	Backpropagation-Lernen	48
2.5	Anwenden des Backpropagation-Netzes	58
2.6	Radiale Basisfunktionsnetze	63
2.7	Zusammenfassung	67
2.8	Weiterführende Literatur	72
20	Ühungen	72

KAPITEL 3	BÜNDELN VON MUSTERN	75
3.1	Grundlagen	75
3.2	Die selbstorganisierende Merkmalskarte	78
3.3	Ein Experiment	92
3.4	Zusammenfassung	95
3.5	Weiterführende Literatur	95
3.6	Übungen	96
KAPITEL 4	MUSTERASSOZIATION	101
4.1	Einführung	101
4.2	Das diskrete Hopfield-Netz	102
4.3	Bidirektionaler Assoziativspeicher	109
4.4	Autoassoziative Backpropagation	113
4.5	Zusammenfassung	116
4.6	Weiterführende Literatur	117
4.7	Übungen	117
КАРІТЕС 5	EINIGE BEISPIELE FÜR REKURRENTE NETZE	119
5.1	Einführung	119
5.2	Backpropagation im Zeitverlauf	120
5.3	Das einfache rekurrente Netz	124
5.4	Zusammenfassung	133
5.5	Weiterführende Literatur	133
5.6	Übungen	134
карітєц б	WEITERE NETZMODELLE UND EINIGE PRAKTISCHE PUNKTE	135
6.1	Einführung	135
6.2	Netze unter Verwendung von Statistik	136
6.3	Ein Beispiel für ein modulares neuronales Netz	151
6.4	Einige praktische Überlegungen zum Trainieren	
	neuronaler Netze	155
6.5	Zusammenfassung	163
6.6	Weiterführende Literatur	163
6.7	Übungen	164

6 INHALTSVERZEICHNIS

KAPITEL	7	VERBINDUNGEN ZUR KÜNSTLICHEN INTELLIGENZ	167
7	' .1	Einführung	167
7	7.2	Die Natur der Intelligenz	168
7	' .3	Die Symbolsystem-Hypothese	173
7	' .4	Repräsentation mit Symbolen	177
7	'.5	Verstehen natürlicher Sprache	186
7	' .6	Die symbolisch-konnektionistische Verbindung	194
7	7.7	Zusammenfassung	196
7	'.8	Weiterführende Literatur	196
7	'.9	Übungen	197
KAPITEL	8	SYNTHETISIEREN VON SYMBOLEN MIT NEURONALEN NETZEN	199
8	3.1	Neuronale Netze in symbolischen Gewändern	199
8	3.2	Rekursiver Autoassoziativspeicher	200
8	3.3	Konnektionistische Repräsentationen	206
8	3.4	Verarbeitung natürlicher Sprache	218
8	3.5	Weitere Überlegungen zur Repräsentation	230
8	3.6	Die Möglichkeit maschineller Kommunikation	234
8	3.7	Zusammenfassung	240
8	8.8	Weiterführende Literatur	240
8	3.9	Übungen	241
ANHANG	A	GRUNDLAGEN DER LINEAREN ALGEBRA	243
ANHANG	В	GLOSSAR	251
		BIBLIOGRAPHIE	255
		DEUTSCHSPRACHIGE LITERATUR	259
		REGISTER	261

INHALTSVERZEICHNIS 7