Electromagnetic Scattering in Disperse Media

Inhomogeneous and Anisotropic Particles

Published in association with **Praxis Publishing** Chichester, UK

Contents

Preface	X
Acknowledgments	xv
Abbreviations	xvi
List of figures	xix
List of tables	XXV

Coo	rdinate and momentum representations in the theory of light scattering
by d	lisperse media
1.1	Differential and integral equations of electromagnetic scattering.
1.2	Light scattering by particle collections
	1.2.1 Equations for multiple scattering waves
	1.2.2 Statistical characteristics of scattered waves
1.3	Electromagnetic scattering by a homogeneous spherical particle in
	coordinate and momentum representations
1.4	Calculated characteristics of scattered light
1.5	Computational aspects of the Mie problem
	1.5.1 General considerations
	1.5.2 Bessel functions
	1.5.3 Calculation of angular functions
14-1	
2.1	General information on atmospheric aerosols

	2.2	Microphysical model of aerosols	53
	2.3	Complex refractive index of aerosol particles	56
	2.4	Continental aerosols and homogeneous and inhomogeneous	_
		particle models	59
	2.5	Equilibrium radius of water-containing particles	63
3	Ligh	t scattering and absorption by two- and multilayered spheres	72
	3.1	Light scattering by a two-layered spherical particle	73
	3.2	Effects of core and shell radii and optical constants on absorption	
		of radiation by two-layered particles	81
	3.3	Effects of core and shell radii and optical constants on scattering	0.0
	2.4	and extinction by two-layered particles	90
	3.4	Specific features of light scattering and absorption by hollow	00
	35	Particles	90
	5.5	and internal fields for multilayered spheres	103
		3.5.1 Formal solution, set of linear equations	105
		3.5.2 Algorithm and computer code structure.	111
4	Ligh	t scattering by water-containing atmospheric aerosol particles	116
	4.1	Calculation of light scattering and absorption by polydisperse	
		ensembles of homogeneous and inhomogeneous particles	116
	4.2	Extinction, scattering, and absorption coefficients for polydisperse	
	4.2	systems of TLPs and HPs	121
	4.3	The possibility of purposefully changing the effectiveness of	120
	4.4	Influence of water content on angular characteristics of light	130
	4.4	scattering by aerosols	138
	4 5	Comparison of scattering angular characteristics of TLP and HP	150
	1.5	ensembles.	145
	4.6	Scattering angular characteristics of water-containing particle	
		ensembles and comparisons with experimental results	158
5	Integ	ral characteristics of absorption by spheres	164
	5.1	Absorption in selected regions of the particle: volume and surface	
		integral representations	165
	5.2	Kattawar–Eisner formula	168
	5.3	Angle-averaged intensity of internal field	172
		5.3.1 Theory	172
	5 1	5.5.2 Some results	1/4
	5.4	5.4.1 Theory	101
		5.4.1 Incorp. $5.4.2$ Some results	101
	55	Absorption in the restricted region of the spherical particle	100
	5.5	Absorption in the restricted region of the spherical particle	190

6	Inter	nal intensity distributions for homogeneous spherical particles	200
	6.1	Intensity distribution inside water droplets	201
	6.2	Internal fields of metallic particles	212
	6.3	Features of electromagnetic fields inside particles with $n < 1$	216
	6.4	Analyses of the effects of absorption on spatial structures of	
		MDRs in spherical micro-particles	219
	6.5	Similarity criterion for optical fields in weakly absorbing spherical	
		aerosol particles	226
7	Into	mal intensity distributions incide subariaal two layered nerticles	
/	(TL)	nai intensity distributions inside spherical two-layered particles	232
	7.1	Absorption and energy distribution inside metallic particles with	232
		oxide films	232
	7.2	Absorption of IR radiation and optical fields inside hollow	
		metallic and metallized particles	240
	7.3	Absorption resonances for HOPs	242
0	Tiak	t anttoning by policily inhomogeneous porticles	247
0		Solution of the problem of light southering by subgridel particles	247
	0.1	with smooth radial antical inhomogeneity	247
	87	Comparison of light scattering characteristics of the aerosal PIP s	247
	0.2	HPs and TI Ps	256
	83	Comparison of scattering by systems of atmospheric RIPs and	250
	0.5	systems of HPs and TLPs	263
	84	Light scattering by spheres with homogeneous cores and RI shells	268
	0.1	8.4.1 Formal solution	268
		8.4.2 Solution for power profile	272
		8.4.3 Algorithm for power profile	277
	8.5	Asymptotic model of a fractal cluster	279
		8.5.1 What is a fractal cluster	279
		8.5.2 Model construction	281
9	Ligh	t scattering by weakly inhomogeneous and weakly anisotropic	
	parti	icles	291
	9.1	Modified diffraction equation and the Born distorted wave	
	~ •	approximation for radially-inhomogeneous particles (RIPs)	292
	9.2	Anisotropic particles in the atmosphere	294
	9.3	Light scattering by weakly anisotropic spherical particles	297
	9.4	Amplitude scattering matrix for spherical APs	302
	9.5	Integral scattering characteristics for ensembles of APs	308
	9.6	Angular characteristics of light scattering by systems of APs	314

x Contents

10	Some	e practical aspects of light scattering by inhomogeneous and	
	aniso	tropic particles	321
	10.1	Detection of adsorbed layers on particle surfaces and estimation of their thickness.	321
	10.2	Dispersion light filters with TLP's	327
	10.3	Quasi-homogeneity of scattering media and IR radiation	337
	10.4	Christiansen effect in disperse media with APs	343
Арј	pendix	A The Riccati–Bessel functions	349
	A.1	The definition of Bessel functions	349
	A.2	Recursions and asymptotes	350
	A.3	Quadratic combinations	353
	A.4	Indefinite integrals	354
Арј	pendix	B Basic expressions on associated Legendre polynomials	359
	B.1	functions	359
	B.2	Symmetry over argument and values for some particular	360
	R 3	Recursions	364
	B.4	Indefinite integrals for the quadratic combinations of the angular	207
	B .5	Definite integrals over the quadratic combinations of angular functions	367 369
Apj	pendix	C Vector spherical wave functions.	379
	C.1	Definition of vector spherical wave functions	379
	C.2	Integrals for the vector angular wave functions	380
	C.3	Integrals for the vector spherical wave functions	381
Ap	pendix	D Guide to our light scattering codes	383
Ap	pendix	E Light scattering codes on the Internet.	385
Ref	ference	28	388
Ind	ex		421