THERMODYNAMICS AND INTRODUCTORY STATISTICAL MECHANICS

BRUNO LINDER

Department of Chemistry and Biochemistry The Florida State University

WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC. PUBLICATION

CONTENTS

PREFACE			
1	INTF	RODUCTORY REMARKS	1
	1.1	Scope and Objectives / 1	
	1.2	Level of Course / 2	
	1.3	Course Outline / 2	
	1.4	Books / 3	
PA	RT I	THERMODYNAMICS	5
2	BAS	IC CONCEPTS AND DEFINITIONS	7
	2.1	Systems and Surroundings / 8	
	2.2	State Variables and Thermodynamic Properties / 8	
	2.3	Intensive and Extensive Variables / 9	
	2.4	Homogeneous and Heterogeneous Systems, Phases / 9	
	2.5	Work / 9	
	2.6	Reversible and Quasi-Static Processes / 10	
		2.6.1 Quasi-Static Process / 11	
		2.6.2 Reversible Process / 12	
	2.7	Adiabatic and Diathermal Walls / 13	
	2.8	Thermal Contact and Thermal Equilibrium / 13	

3 THE LAWS OF THERMODYNAMICS I

- 3.1 The Zeroth Law—Temperature / 15
- 3.2 The First Law—Traditional Approach / 16
- 3.3 Mathematical Interlude I: Exact and Inexact Differentials / 18
- 3.4 The First Law—Axiomatic Approach / 19
- 3.5 Some Applications of the First Law / 23
 - 3.5.1 Heat Capacity / 23
 - 3.5.2 Heat and Internal Energy / 23
 - 3.5.3 Heat and Enthalpy / 24
- 3.6 Mathematical Interlude II: Partial Derivatives / 26
 - 3.6.1 Relations Between Partials of Dependent Variables / 26
 - 3.6.2 Relations Between Partials with Different Subscripts / 27
- 3.7 Other Applications of the First Law / 27
 - $3.7.1 \quad C_P C_V / 27$
 - 3.7.2 Isothermal Change, Ideal Gas / 28
 - 3.7.3 Adiabatic Change, Ideal Gas / 28
 - 3.7.4 The Joule and the Joule-Thomson Coefficients / 29

4 THE LAWS OF THERMODYNAMICS II

- 4.1 The Second Law—Traditional Approach / 32
- 4.2 Engine Efficiency: Absolute Temperature / 36
 - 4.2.1 Ideal Gas / 36
 - 4.2.2 Coupled Cycles / 36
- 4.3 Generalization: Arbitrary Cycle / 38
- 4.4 The Clausius Inequality / 39
- 4.5 The Second Law—Axiomatic Approach (Carathéodory) / 41
- 4.6 Mathematical Interlude III: Pfaffian Differential Forms / 43
- 4.7 Pfaffian Expressions in Two Variables / 44
- 4.8 Pfaffian Expressions in More Than Two Dimensions / 44
- 4.9 Carathéodory's Theorem / 45
- 4.10 Entropy—Axiomatic Approach / 45
- 4.11 Entropy Changes for Nonisolated Systems / 48
- 4.12 Summary / 49
- 4.13 Some Applications of the Second Law / 50
 - 4.13.1 Reversible Processes (PV Work Only) / 50
 - 4.13.2 Irreversible Processes / 51

14

32

USEFUL FUNCTIONS: THE FREE ENERGY 5 FUNCTIONS 52 5.1 Mathematical Interlude IV: Legendre Transformations / 53 Application of the Legendre Transformation / 54 5.1.1 Maxwell Relations / 55 5.2 5.3 The Gibbs-Helmholtz Equations / 55 Relation of ΔA and ΔG to Work: Criteria for Spontaneity / 56 5.4 Expansion and Other Types of Work / 56 5.4.1 542Comments / 57 5.5 Generalization to Open Systems and Systems of Variable Composition / 58 5.5.1Single Component System / 58 Multicomponent Systems / 59 5.5.2 5.6 The Chemical Potential / 59 5.7 Mathematical Interlude V: Euler's Theorem / 60 5.8 Thermodynamic Potentials / 61 6 THE THIRD LAW OF THERMODYNAMICS 65 Statements of the Third Law / 66 6.1 6.2 Additional Comments and Conclusions / 68 7 GENERAL CONDITIONS FOR EQUILIBRIUM AND STABILITY 70 7.1 Virtual Variations / 71 7.2 Thermodynamic Potentials—Inequalities / 73 Equilibrium Condition From Energy / 75 7.3 7.3.1 Boundary Fully Heat Conducting, Deformable, Permeable (Normal System) / 75 Special Cases: Boundary Semi-Heat Conducting, 7.3.2 Semi-Deformable, or Semi-Permeable / 76 7.4 Equilibrium Conditions From Other Potentials / 77 General Conditions for Stability / 78 7.5 7.6 Stability Conditions From E / 78 7.7 Stability Conditions From Cross Terms / 80 7.8 Stability Conditions From Other Potentials / 81 Derivatives of Thermodynamic Potentials With Respect 7.9

to Intensive Variables / 82

ix

8 APPLICATION OF THERMODYNAMICS TO GASES, LIQUIDS, AND SOLIDS

- 8.1 Gases / 83
- 8.2 Enthalpy, Entropy, Chemical Potential, Fugacity / 85
 - 8.2.1 Enthalpy / 85
 - 8.2.2 Entropy / 86
 - 8.2.3 Chemical Potential / 87
 - 8.2.4 Fugacity / 88
- 8.3 Standard States of Gases / 89
- 8.4 Mixtures of Gases / 90
 - 8.4.1 Partial Fugacity / 90
 - 8.4.2 Free Energy, Entropy, Enthalpy, and Volume of Mixing of Gases / 90
- 8.5 Thermodynamics of Condensed Systems / 91
 - 8.5.1 The Chemical Potential / 92
 - 8.5.2 Entropy / 93
 - 8.5.3 Enthalpy / 93

9 PHASE AND CHEMICAL EQUILIBRIA

- 9.1 The Phase Rule / 94
- 9.2 The Clapeyron Equation / 96
- 9.3 The Clausius-Clapeyron Equation / 97
- 9.4 The Generalized Clapeyron Equation / 98
- 9.5 Chemical Equilibrium / 99
- 9.6 The Equilibrium Constant / 100

10 SOLUTIONS—NONELECTROLYTES

- 10.1 Activities and Standard State Conventions / 102
 - 10.1.1 Gases / 102
 - 10.1.2 Pure Liquids and Solids / 103
 - 10.1.3 Mixtures / 103
 - 10.1.3.1 Liquid–Liquid Solutions–Convention I (Con I) / 104
 - 10.1.3.2 Solid–Liquid Solutions—Convention II (Con II) / 104
- 10.2 Ideal and Ideally Dilute Solutions; Raoult's and Henry's Laws / 104

102

94

	10.3	10.3.1 For Ideal Solutions / 107 10.3.2 For Nonideal Solutions / 107	
	10.4	Colligative Properties / 108 10.4.1 Lowering of Solvent Vapor Pressure / 108 10.4.2 Freezing Point Depression / 109 10.4.3 Boiling Point Elevation / 111 10.4.4 Osmotic Pressure / 112	
11		CESSES INVOLVING WORK OTHER THAN SSURE-VOLUME WORK	114
		P-V Work and One Other Type of Work / 115 P-V, σA , and fL Work / 116	
12		SE TRANSITIONS AND CRITICAL NOMENA	119
		Stable, Metastable, and Unstable Isotherms / 120 The Critical Region / 124	
PA	RT II	INTRODUCTORY STATISTICAL MECHANICS	127
13	PRIN	ICIPLES OF STATISTICAL MECHANICS	129
	13.1	Introduction / 129	
	13.2	Preliminary Discussion—Simple Problem / 130	
	13.3	Time and Ensemble Averages / 131	
		Number of Microstates, Ω_D , Distributions D_i / 132	
		Mathematical Interlude VI: Combinatory Analysis / 134	
		Fundamental Problem in Statistical Mechanics / 136	
	13.7	Maxwell-Boltzmann, Fermi-Dirac, Bose-Einstein Statistics. "Corrected" Maxwell-Boltzmann Statistics / 137	
		13.7.1 Maxwell-Boltzmann Statistics / 137	
		13.7.2 Fermi-Dirac Statistics / 137	
		13.7.3 Bose-Einstein Statistics / 137	
	13.8	13.7.4 "Corrected" Maxwell-Boltzmann Statistics / 138 Systems of Distinguishable (Localized) and Indistinguishable	ole
	12.0	(Nonlocalized) Particles / 139	

13.9 Maximizing Ω_D / 139

- 13.10 Probability of a Quantum State: The Partition Function / 14013.10.1 Maxwell-Boltzmann Statistics / 140
 - 13.10.2 Corrected Maxwell-Boltzmann Statistics / 141

143

150

167

14 THERMODYNAMIC CONNECTION

- 14.1 Energy, Heat, and Work / 143
- 14.2 Entropy / 144
 - 14.2.1 Entropy of Nonlocalized Systems (Gases) / 145
 - 14.2.2 Entropy of Localized Systems (Crystalline Solids) / 145
- 14.3 Identification of β with 1/kT / 145
- 14.4 Pressure / 146
- 14.5 The Functions E, H, S, A, G, and μ / 147

15 MOLECULAR PARTITION FUNCTION

- 15.1 Translational Partition Function / 151
- 15.2 Vibrational Partition Function: Diatomics / 152
- 15.3 Rotational Partition Function: Diatomics / 152
- 15.4 Electronic Partition Function / 154
- 15.5 Nuclear Spin States / 154
- 15.6 The "Zero" of Energy / 155

16 STATISTICAL MECHANICAL APPLICATIONS 158

- 16.1 Population Ratios / 158
- 16.2 Thermodynamic Functions of Gases / 159
- 16.3 Equilibrium Constants / 161

16.4 Systems of Localized Particles: The Einstein Solid / 164 16.4.1 Energy / 164

- 16.4.2 Heat Capacity / 165
- 16.4.3 Entropy / 165
- 16.5 Summary / 166

ANNOTATED BIBLIOGRAPHY

APPENDIX I HOMEWORK PROBLEM SETS 169

Problem Set I / 169 Problem Set II / 170 Problem Set III / 171 Problem Set IV / 172 Problem Set V / 173 Problem Set VI / 173 Problem Set VII / 174 Problem Set VIII / 175 Problem Set IX / 175 Problem Set X / 176

APPENDIX II SOLUTIONS TO PROBLEMS

Solution to Set I / 177 Solution to Set II / 179 Solution to Set III / 181 Solution to Set IV / 185 Solution to Set V / 187 Solution to Set VI / 189 Solution to Set VII / 191 Solution to Set VII / 194 Solution to Set IX / 195 Solution to Set X / 198

INDEX

201

177