Routing, Flow, and Capacity Design in Communication and Computer Networks

Michał Pióro

Warsaw University of Technology, Warsaw, Poland Lund University, Lund, Sweden

Deepankar Medhi

University of Missouri-Kansas City Kansas City, Missouri, USA

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO MORGAN KAUFMANN PUBLISHERS IS AN IMPRINT OF ELSEVIER

CONTENTS

	Foreword	xix
	Preface	xxi
PART I	INTRODUCTORY NETWORK DESIGN	1
	CHAPTER1 Overview	
	1.1 A Network Analogy	4
	1.2 Communication and Computer Networks, and Network Providers	9
	1.3 Notion of Traffic and Traffic Demand	11
	1.3.1 Traffic in the Internet	
	1.3.2 Traffic in the Telephone Network	17
	1.3.3 Demand in the Transport Network	20
	1.3.4 Distinction between Traffic and Transport Network	22
	1.3.5 Generic Naming for Demand Volume and Capacity	22
	1.4 A Simple Design Example	22
	1.5 Notion of Routing and Flows	23
	1.6 Architecture of Networks: Multi-Layer Networks	25
	1.7 Network Management Cycle	27
	1.8 Scope of the Book	31
	1.9 Naming and Numbering Convention	
	1.10 Summary	36
	CHAPTER 2 Network Design Problems—Notation and Illustrations	27
	2.1 A Network Flow Example in Link-Path Formulation	
	2.2 Node-Link Formulation	
	2.3 Notions and Notations	
	2.4 Dimensioning Problems	
	2.5 Shortest-Path Routing	
	2.6 Fair Networks	62

2.7 Topological Design	65
2.8 Restoration Design	66
2.9 *Multi-Layer Networks Modeling	68
2.10 Summary	74
Exercises for Chapter 2	76
CHAPTER 3 Technology-Related Modeling Examples	77
3.1 IP Networks: Intra-Domain Traffic Engineering	78
3.2 MPLS Networks: Tunneling Optimization	82
3.3 ATM Networks: Virtual Path Design	84
3.4 Digital Circuit-Switched Telephone Networks: Single– Busy Hour and Multi–Busy Hour Network Dimensioning	86
3.5 SONET/SDH Transport Networks: Capacity and	
Protection Design	90
3.6 SONET/SDH Rings: Ring Bandwidth Design	94
3.7 WDM Networks: Restoration Design with Optical	
Cross-Connects	96
3.8 IP Over SONET: Combined Two-Layer Design	
3.9 Summary and Further Reading	101
Exercises for Chapter 3	102

PART II	D	ESIGN MODELING AND METHODS	103
	СН	APTER 4 Network Design Problem Modeling	105
	4.1	Basic Uncapacitated and Capacitated Design Problems 4.1.1 Uncapacitated Problems	
		4.1.2 Capacitated Problems	112
		4.1.3 Mixed Problems	115
	4.2	Routing Restrictions	115
		4.2.1 Path Diversity	116
		4.2.2 Lower Bounds on Non-Zero Flows	117
		4.2.3 Limited Demand Split	118
		4.2.4 Integral Flows	
	4.3	Non-Linear Link Dimensioning, Cost, and Delay Functions 4.3.1 Modular Links	
		4.3.2 Convex Cost and Delay Functions	128

4.3.3 Concave Link Dimensioning Functions	134
4.4 Budget Constraint	140
4.5 Incremental NDPs	141
4.6 Extensions of Problem Modeling	142
4.6.1 Representing Nodes	
4.6.2 Capabilities of Link-Path Representation	
4.7 Summary and Further Reading	145
Exercises for Chapter 4	148
CHAPTER 5 General Optimization Methods for Network	
Design	-
5.1 Linear Programming	
5.1.1 Basic Facts About LP	
5.1.2 Duality in LP	
5.1.3 Simplex Method	
5.1.4 Interior Point Methods (IPM)	
5.2 Mixed-Integer Programming	
5.2.2 The Branch-and-Cut (BC) Method	
5.2.3 The Cutting-Plane Method	
5.2.4 Dynamic Programming	
5.3 Stochastic Heuristic Methods	
5.3.1 Local Search	
5.3.2 Simulated Annealing (SAN)	
5.3.3 Evolutionary Algorithm (EA)	
5.3.4 Simulated Allocation (SAL)	
5.3.5 Tabu Search (TS)	
5.3.6 Other Methods	177
5.4 LP Decomposition Methods	
5.4.1 Lagrangian Relaxation (LR)	
5.4.2 Column Generation Technique for Candidate Path List	
Augmentation (CPLA)	184
5.4.3 Benders' Decomposition	192
5.5 Gradient Minimization and Other Approaches for	
Convex Programming Problems	
5.5.1 The Flow Deviation (FD) Method	
5.5.2 The Gradient Projection (GP) Method	
5.5.3 Dual Method	198

5.6	Special Heuristics for Concave Programming Problems	. 199
	5.6.1 Minimum First Derivative Length Path (MFDLP) Method	200
	5.6.2 Greedy Descent (GD) Method	. 201
	5.6.3 Numerical Example	. 202
5.7	Solving Multi-Commodity Flow Problems	203
	5.7.1 LP Formulations	. 204
	5.7.2 Non-Bifurcated Flows	. 204
	5.7.3 Modular Links	. 205
5.8	Summary and Further Reading	206
Exe	rcises for Chapter 5	208

CH	APTER 6 Location and Topological Design	
6.1	Node Location Problem	
	6.1.1 Add Heuristic	
6.2	Joint Node Location and Link Connectivity Problem 6.2.1 Design Formulation: One-Level	
	6.2.2 Design Formulation: Two-Level	
	6.2.3 Design Results	
6.3	Topological Design 6.3.1 Discussion	
	6.3.2 Design with Budget Constraint	
	6.3.3 Design with Extended Objective	
	6.3.4 Transit Nodes and Links Localization Problem	
	6.3.5 Heuristic Algorithms	
	6.3.6 Numerical Results	
6.4	Lower Bounds for Branch-and-Bound 6.4.1 Case: Topological Design with Budget Constraint	
	6.4.2 Case: Transit Node and Link Localization Problem	
6.5	Summary and Further Reading	
Exe	rcises for Chapter 6	

CH	APTER 7 Networks With Shortest-Path Routing	253
7.1	Shortest-Path Routing Allocation Problem	
	7.1.1 Basic Problem Formulation	256
	7.1.2 Adjustments of the Basic Problem	260
	7.1.3 Minimum-Hop Routing versus Network Delay: An Illustration	264

7.2	MIP Formulation of the Shortest-Path Routing Allocation	
	Problem and Dual Problems	266
	7.2.1 MIP Formulation of the Shortest-Path Routing Allocation	
	Problem	
	7.2.2 Duality and Shortest-Path Routing	268
7.3	Heuristic Direct Methods for Determining the Link	
	Metric System	
	7.3.1 Weight Adjustment (WA)	
	7.3.2 Simulated Annealing (SAN)	
	7.3.3 Lagrangian Relaxation (LR)-Based Dual Approach	
7.4	Two-Phase Solution Approach	
	7.4.1 Formulation of the Two-Phase Optimization Problem	
	7.4.2 Solving Phase 1	278
	7.4.3 Solving Phase 2	282
7.5	Impact Due to Stochastic Approaches	283
7.6	Impact of Different Link Weight System	285
7.7	Impact on Different Performance Measures	289
7.8	Uncapacitated Shortest-Path Routing Problem	291
7.9	Optimization of the Link Metric System under Transient	
	Failures	292
7.10	* \mathcal{NP} -Completeness of the Shortest-Path Routing	
	Allocation Problem	295
7.11	* Selfish Routing and its Relation to Optimal Routing	298
	Summary and Further Reading	
	rcises for Chapter 7	
	IAPTER 8 Fair Networks	
СП	IAPTER O TUIT TOUTIONS	
8.1	Notions of Fairness	308
	8.1.1 An Example	308
	8.1.2 Max-Min Fairness (MMF) Allocation Problem for Fixed Paths	309
	8.1.3 Proportional Fairness (PF) Allocation Problem for Fixed Paths.	314
8.2	Design Problems for Max-Min Fairness (MMF)	
	8.2.1 Capacitated Problems for Flexible Paths	
	8.2.2 Uncapacitated Problems for Flexible Paths	330
	8.2.3 Capacitated Problems With Non-Bifurcated Flows	330
8.3	Design Problems for Proportional Fairness (PF)	
	8.3.1 Capacitated Problems for Flexible Paths	
	8.3.2 Uncapacitated Problems With a Budget Constraint	332

8.3.3 Uncapacitated Problems With an Extended Objective Function $$.	338
8.3.4 Numerical Examples	. 340
8.3.5 Minimum Delay	345
8.3.6 Non-Bifurcated Flows	346
8.4 Summary and Further Reading	346
Exercises for Chapter 8	. 348
PART III ADVANCED MODELS	. 351
CHAPTER 9 Restoration and Protection Design of Resilient Networks	· 353
9.1 Failure States, Protection/Restoration Mechanisms, and	
Diversity	
9.1.2 Re-Establishment Mechanisms	355
9.1.3 Protection by Diversity	358
9.2 Link Capacity Protection/Restoration 9.2.1 Link Restoration	
9.2.2 Hot-Standby Link Protection	. 364
9.3 Demand Flow Re-Establishment	
9.3.2 Restricted Reconfiguration	. 368
9.3.3 *Path Restoration With Situation-Dependent Back-up Paths	372
9.3.4 *Path Restoration With Single Back-up Paths	373
9.3.5 Hot-Standby Path Protection	376
9.4 Extensions	
9.4.1 Non-Linear Cost/Dimensioning Functions	
9.4.2 Modular Link Capacities and/or Integral Flows	
9.4.3 Budget Constraint	
9.4.4 *Routing Restrictions	
9.4.5 Separating Normal and Protection Capacity	
9.4.6 Separated Normal and Protection Design	
9.5 Protection Problems 9.5.1 Link Capacity Restoration	386
9.5.2 *Path Restoration	
9.6 Applicability of the Protection/Restoration Design Models 9.6.1 Dynamic Routing Circuit-Switched Networks	
9.6.2 Backbone IP, MPLS, and ATM Networks	. 394

	9.6.3 Optical Systems, SONET/SDH, and WDM Networks	
9.7	Summary and Further Reading	
Exer	rcises for Chapter 9	400
сц	ADTED 10 Augusta of Outinity stars Technic	
	APTER 10 Application of Optimization Techniques	102
	for Protection and Restoration Design	
10.1	Path Generation	
	10.1.1 Unrestricted Reconfiguration	
	10.1.2 Restricted Reconfiguration	
	10.1.3 Back-up Path Restoration	
10.0	10.1.4 Numerical Results	
10.2	Lagrangian Relaxation (LR) With Subgradient Maximization 10.2.1 Unrestricted Reconfiguration	
	10.2.2 Restricted Reconfiguration	
	10.2.3 Back-up Path Restoration	
10.3	Benders' Decomposition	
10.5	10.3.1 Unrestricted Reconfiguration	
	10.3.2 Restricted Reconfiguration	
	10.3.3 Numerical Results	
10.4	Modular Links	
	Stochastic Heuristic Methods	
	10.5.1 Simulated Allocation (SAL)	
	10.5.2 Simulated Annealing (SAN)	444
	10.5.3 Evolutionary Algorithm (EA)	
10.6	* Selected Application: Wavelength Assignment Problem	
	in WDM Networks	
	10.6.1 Design Problems	
	10.6.2 Design Methods	
	10.6.3 Numerical Results	450
	10.6.4 Remarks	
10.7	Summary and Further Reading	453
Exer	rcises for Chapter 10	453
CH	APTER 11 Multi-Hour and Multi-Time-Period	
	Network Modeling and Design	λεε
11 1		
	Multi-Hour Design 11.1.1 Illustration of Multi-Hour Dimensioning	
	11.1.2 Multi-Hour Dimensioning Models	

11.1.3 Multiple Services Case	
11.1.4 Algorithmic Approaches	
11.1.5 Computational Results	
11.1.6 Capacitated Case: Multi-Hour Routing	
11.2 Multi-Period Design	
11.2.1 Capacity Planning	
11.2.2 Multi-Period Flow Routing Problem	
11.2.3 Model Extensions	
11.2.4 Algorithmic Approaches	
11.2.5 Dynamic Programming	
11.2.6 A Hybrid Method	
11.3 Summary and Further Reading	
Exercises for Chapter 11	

CHAPTER 12 Multi-Layer Networks: Modeling and 12.1.5 Optimization Methods for Multi-Layer Normal Design Problems ... 513 12.2.2 Restoration Involving Only Reconfiguration of Lower Layer 521 12.2.3 Restoration Involving Only Reconfiguration of Upper Layer 522 12.2.5 Optimization Methods for Multi-Laver Restoration Design 524 12.3.1 Mixed Two-Resource Laver Design With Multi-Hour Traffic and 12.3.2 Multi-Layer Design Problems With Multi-Hour, Multi-Service

12.4 Application of Decomposition Methods for Two-Layer Desig	n 535
12.4.1 LR With Subgradient Maximization of the Dual Function \dots	536
12.4.2 Benders' Decomposition	540
12.4.3 Path Generation	549
12.5 Numerical Results	553
12.6 Cost Comparison	559
12.6.1 Diversity and Restoration (with Multi-Hour Traffic)	559
12.6.2 Gain With Dynamic Transport Over Static Transport	
(with Multi-Service, Multi-Hour Traffic)	
12.7 Grooming/Multiplex Bundling	565
12.7.1 Illustration of Multi-Layer in the Presence of Grooming	566
12.7.2 Special Cases when Grooming Nodes are Known	568
12.7.3 A General Two Layer Formulation	
12.7.4 Remark	574
12.8 Summary and Further Reading	574
Exercises for Chapter 12	577

CH	APTER 13 Restoration Design of Single- and	
	Multi-Layer Fair Networks	31
13.1	Restoration Design of Single-Layer PF Networks5813.1.1 Problem Formulation and Iterative Solution58	
	13.1.2 Algorithm With Dual Non-Blocking Tests	5
	13.1.3 *Regular Sets of Blocking Situations	7
	13.1.4 Numerical Results)]
13.2	Decomposition Methods for the Single-Layer	
	Restoration Problems	7
	13.2.1 Benders' Decomposition	97
	13.2.2 Path Generation	8
13.3	Design of Resilient Two-Layer PF Networks	0
	13.3.1 Three Basic Problems for Unrestricted Flow Restoration 60	0
	13.3.2 Numerical Examples	3
	13.3.3 Decomposition Methods for Two-Layer Networks	8
13.4	Extensions	9
13.5	Summary and Further Reading	0
Exer	cises for Chapter 136	11

APPENDICES

APPENDIX A Optimization Theory Refresher	613
A.1 Basic Notions	613
A.2 Karush-Kuhn-Tucker (KKT) Optimality Conditions	614
A.3 Interpretation of the Lagrange Multipliers in the	
KKT Conditions	616
A.4 Numerical Methods for Finding Minima of	
Differentiable Problems	
A.5 Duality	
A.6 Duality for Convex Programs	
A.7 Duality for Convex Objective and Linear Constraints	
A.8 Subgradient Maximization of the Dual Function	620
A.9 Subgradient Maximization of the Dual Function of Linear Programming Problems	677
	022
APPENDIX B Introduction to Complexity Theory and	
\mathcal{NP} -Completeness	625
B.1 Introduction	625
B.2 Complexity of a Problem	626
B.3 Deterministic and Non-Deterministic Machines	627
B.4 The Classes of Problems Known as \mathcal{P} and \mathcal{NP}	629
B.5 Reducibility Relation between Problems	630
B.6 The Class of \mathcal{NP} -Complete Problems	631
B.7 The Satisfiability Problem and Cook's Theorem	631
B.8 Network Flow Problems	
B.8.1 The D2CIF problem	
B.8.2 The U2CIF problem	
B.9 Final Remarks	637
APPENDIX C Shortest-Path Algorithms	Can
Sher test Tutil Tuger terms	
C.1 Introduction and Basic Notions	
C.2 Basic Shortest-Path Problem	
C.2.1 Dijkstra's Algorithm for Non-Negative Weights	
C.2.2 Shortest Paths With a Hop Limit	
C.2.3 Negative Weights	644

C.3 K-Shortest Paths and All Optimal Paths		
C.3.1 K-Shortest Paths 646		
C.3.2 All Optimal Paths647		
C.4 Shortest Sets of Disjoint Paths		
C.4.1 Shortest Sets of Edge-Disjoint Paths		
C.4.2 Shortest Sets of Vertex-Disjoint Paths		
APPENDIX D Using LP/MIP Packages		
D.1 Solving Linear Programming Problems using Maple,		
Matlab, and CPLEX653		
D.2 Solving (Mixed) Integer Programming Problems Using CPLEX656		
D.3 Modeling Using AMPL		
D.4 Final Remark		
List of Acronyms		
Solutions to Selected Exercises		
Bibliography		
Index		