Introduction to Protein Structure

Carl Branden

Uppsala Biomedical Center Swedish University of Agricultural Sciences Uppsala, Sweden

John Tooze

European Molecular Biology Organization Heidelberg, Germany

Garland Publishing, Inc. New York and London, 1991

THE COVER

×. ...

Front: The background photograph of the cover is of a Laue x-ray diffraction pattern produced by a crystal of the plant enzyme ribulose bisphosphate carboxylase. This technique is described in Chapter 17. Information derived from such x-ray patterns, together with a knowledge of the amino acid sequence, enabled the three-dimensional arrangement of atoms in the protein to be determined. A simplified representation of this protein structure is shown in color, superimposed on the diffraction pattern. The enzyme, which is involved in the fixation of carbon dioxide, is a member of the large class of α/β barrel protein structures. This class of structures is discussed in detail in Chapter 4.

E 5 a / 83 NAX-PLANCK-INSTITUT Konteriodrich-Bonhoofior-Institut Otto-Halm-Bibliothek Mr biophysikelische Chemis 94 308

Back: Tomato bushy stunt virus is a spherical virus made from 180 protein subunits. Arms extending from sixty of these subunits contribute to an internal framework that determines the size of the correctly assembled virus particle. The interdigitated arms from three subunits meet at each of the twenty icosahedral threefold axes of the virus. One such axis is shown here with the β strands from three subunits shown in different shades of green. Virus structure is described in more detail in Chapter 11.

© 1991 Carl Branden and John Tooze

All rights reserved. No part of this book covered by the copyright hereon may be reproduced or used in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems—without permission of the publisher.

Library of Congress Cataloging-in-Publication Data

Branden, Carl.

Introduction to protein structure / Carl Branden, John Tooze.

p. cm. Includes index. ISBN 0-8153-0344-0 — ISBN 0-8153-0270-3 (pbk.) 1. Proteins—Structure. I. Tooze, John. II. Title. QP551.B7635 1991 574.19'245—dc20 91-11788 CIP

Published by Garland Publishing, Inc. 136 Madison Ave., New York, New York, 10016

Printed in the United States of America

15 14 13 12 11 10 9 8 7 6 5 4

Contents

Pro	tein Structure	
Pa	rt 1 Basic Structural Principles	1
1.	The Building Blocks	3
	Proteins are polypeptide chains	4
	The genetic code specifies 20 different amino	
	acid side chains	4
	Cysteines can form disulfide bridges	5
	Peptide units are building blocks of protein	
	structures	8
	Glycine residues can adopt many different	
	conformations	8
	Conclusion	9
	Selected Readings	10
2.	Motifs of Protein Structure	11
	Few general principles emerged from the first	
	protein structure	11
	The interior of proteins is hydrophobic	12
	The alpha (α) helix is an important element of	
	secondary structure	12
	The α helix has a dipole moment	13
	Some amino acids are preferred in α helices	13
	Beta (β) sheets usually have their beta (β) strands	
	either parallel or antiparallel	15
	Loop regions are at the surface of protein	
	molecules	18
	Schematic pictures of proteins highlight	
	secondary structure	19
	Topology diagrams are useful for classification	
	of protein structures	20
	Secondary structure elements are connected into	
	simple motifs	21
	The hairpin β motif occurs frequently in protein	
	structures	23
	The Greek key motif is found in antiparallel	
	β sheets	24
	The β - α - β motif contains two parallel β strands	24

	Protein molecules are organized in a structural	
	hierarchy	26
	Large polypeptide chains fold into several	
	domains	26
	Domains are built from structural motifs	27
	Simple motifs combine to form complex motifs	28
	Protein structures can be divided into three	
	main classes	28
	Conclusion	29
	Selected Readings	30
3.	Alpha-Domain Structures	33
	Two adjacent α helices are usually antiparallel	33
	The four-helix bundle is a common domain	
	structure in α proteins	33
	The active site is between the α helices in	
	four-helix bundle structures	35
	The globin fold is present in myoglobin and	
	hemoglobin	35
	Geometric aspects determine α -helix packing	36
	Ridges of one α helix fit into grooves of an	
	adjacent helix	36
	The globin fold has been preserved during	
	evolution	37
	The hydrophobic interior is preserved	38
	Helix movements accommodate interior	
	side-chain mutations	38
	Sickle-cell hemoglobin confers resistance to	
	malaria	39
	Conclusion	40
	Selected Readings	41
4.	Alpha/Beta Structures	43
-•	Parallel ß strands are arranged in barrels or sheets	43
	α/β barrels occur in many different enzymes	44
	Branched hydrophobic side chains dominate	_
	the core of α/β barrels	45

xi

	Pyruvate kinase contains several domains, one	
Į	of which is an α/β barrel	46
	Double barrels have occurred by gene fusion	47
	The active site is formed by loops at one end of	
	the α/β barrel	47
	Stability and function are separated	48
	Was there an ancestral barrel?	48
	α/β twisted open-sheet structures contain	
	α helices on both sides of the β sheet	49
	Open β -sheet structures have different topologies	49
	The position of the active sites can be predicted	
	in α/β structures	51
	Tyrosyl-tRNA synthetase has two different	
	domains $(\alpha/\beta + \alpha)$	51
	Carboxypeptidase is an α/β protein with mixed	
	β sheet	53
	Arabinose-binding protein has two similar	
	α/β domains	54
	Conclusion	56
	Selected Readings	56
5.	Antiparallel Beta Structures	59
	Up-and-down barrels have a simple topology	60
	Retinol-binding protein folds into an	
	up-and-down β barrel	60
	Retinol is bound inside the β barrel	61
	Amino acid sequence reflects β structure	62
	The retinol-binding protein belongs to a	
	superfamily of protein structures	62
	Refinal binding in humans and biliverdin	
	binding in insects show evolutionary	
	relationship	62
	Structure suggests function for β -lactoglobulin	63
	Neuraminidase folds into up-and-down β sheets	64
	Folding motifs form a superbarrel in	
	neuraminidase	64
	The active site is at one end of the superbarrel	65
	Greek key motifs occur frequently in the	
	The superstabling on a level a level of the superstabling of the superst	66
	The domain structure has a simple top domains $The domain s$	6/
	Two Crock how motifs form the demain	68
	The two domains have identical tonalows	68
	The two domains have identical topology	69
	The Crock key metifs are evolutionerily related	69
	in a cructallin	70
	Introp positions separate the four Creek key	70
	motifs	70
	The Greek key motifs can form jolly roll barrols	70
	The jelly roll motif is wrapped around a barrol	70
	The jelly roll barrel is usually divided into two	/1
	sheets	71
	A folding scheme has been suggested for the	11
	ielly roll barrel structure	72
	The hemagolutinin polypeptide chain folds	12
	into a complex structure	72
	The subunit structure is divided into a stem and	12
	a tin	73
	The hemagglutinin molecule is trimeric	73
	00	

	The receptor binding site is formed by the jelly	
	roll domain	74
	Hemagglutinin acts as a membrane fusogen	74
	Conclusion	74
	Selected Readings	76
6.	DNA Structures	79
	The DNA double helix is different in A- and	
	B-DNA	79
	The DNA helix has major and minor grooves	80
	Z-DNA forms a zigzag pattern	81
	B-DNA is the preferred conformation in vivo	81
	Specific base sequences can be recognized in	
	B-DNA	82
	Conclusion	83
	Selected Readings	84
Par	rt 2 Structure, Function, and Engineering	85
7.	DNA Recognition by Proteins with the	
	Helix-Turn-Helix Motif	87
	A molecular mechanism for gene control is	
	emerging	87
	Repressor and Cro proteins operate a procaryotic	
	genetic switch region	88
	The x-ray structure of the complete lambda Cro	
	protein is known	89
	The x-ray structure of the DNA-binding domain	
	of the lambda repressor is known	90
	Both lambda Cro and repressor proteins have a	
	specific DNA-binding motif	91
	Model building predicts Cro–DNA interactions	92
	Genetic studies agree with the structural model	93
	The x-ray structure of DNA complexes with 434	
	Cro and repressor revealed novel features of	
	protein DNA interactions	94
	The structures of 434 Cro and 434 repressor-	
	binding domains are very similar	95
	The B-DNA conformation is distorted in the	
	complexes	95
	Conformational changes of DNA are important	
	for differential repressor binding	96
	Sequence-specific protein-DNA interactions	
	recognize operator regions	96
	Nonspecific protein–DNA interactions determine	
	DNA conformation	97
	Local DNA structure modulates repressor binding	98
	The essence of phage repressor and Cro	99
	Amino acid sequence relations identify	
	helix-turn-helix motifs	99
	Phage Cro and repressor proteins are	
	evolutionarily related	100
	Cro and repressor have homologous sequences	
	but partly different structures	101
	Sequence comparison using strong stereochemical	
	constraints identifies helix-turn-helix motifs	101
	Sequence comparisons without using	
	stereochemical constraints do not identify	
	helix-turn-helix motifs unambiguously	103
	DNA binding is regulated by allosteric control	104

10.	Enzymes That Bind Nucleotides	141
	occerca maaning	1.57
	Selected Readings	139
	Conclusion	13/
	modules	127
	evolutionary relationships DNA-binding proteins are constructed from	130
	evolutionary relationships	124
	synthesis is achieved	135
	How the processivity and fidelity of DNA	170
	The small domain has $3'-5'$ exonuclease activity	134
	The small domain has an α/β structure	133
	The large domain has polymerase activity	132
	The large domain has a large binding cleft	132
	The Klenow fragment has two separate domains	131
	(Pol I) can be crystallized	131
	The Klenow fragment of E. coli DNA polymerase I	
	Enzyme	129
9.	DNA Polymerase Is a Multifunctional	
	Selected Readings	127
	Conclusion	126
	for some eucaryotic DNA-binding proteins	124
	Leucine zippers provide dimerization interactions	
	through a helix-turn-helix motif	121
	Monomers of homeodomains bind to DNA	
	three cysteine residues bound to zinc	120
	Retroviral zinc fingers have one histidine and	
	domain	119
	binuclear zinc cluster in its DNA-binding	
	Yeast transcription factor Gal 4 contains a	
	form one DNA-binding domain	118
	Two zinc fingers in the glucocorticoid receptor	
	two histidine ligands bound to zinc	116
	The classic zinc finger has two cysteine and	
	been observed	115
	Three different families of zinc fingers have	
	different domains	114
	Transcription factors have two functionally	-
2.0	Transcription Factors	113
8.	Structural Motifs of Eucaryotic	
	Selected Indulling	110
	Selected Readinds	110
	Conclusion	100
	B-sheet DNA-binding proteins	109
	the Switch in CAr Mat and are repressors belong to a family of	10/
	A molecular mechanism has been suggested for the switch in CAP	107
	aomains	106
	The polypeptide chain of CAP folds into two	
	CAP is a positive control element	106
	mechanism of the functional switch	105
	A conformational change provides the molecular	
	The <i>trp</i> repressor forms a helix-turn-helix motif	104

142
143
144

	NAD binds in a similar way to each domain	146
	Hydride transfer to NAD is stereospecific	147
	Are the NAD-binding domains evolutionarily	
	related?	148
	The NAD-binding motif can be predicted from	
	amino acid sequence	148
	FAD- and NAD-binding domains have essential	110
	cimilarities	151
	Cone fusion has accurred between an	151
	EMN hinding of B harrel and a outochrome	150
	The extender on h domain is homologous to	132
	The cytochrome-o ₂ domain is nomologous to	150
	mammalian cytochrome D_5	153
	The FMN-binding domain is an α/β barrel	154
	Hexokinase validates the theory of induced fit	155
	Conclusion	157
	Selected Readings	158
11.	The Structure of Spherical Viruses	161
	The protein shells of spherical viruses have	
	icosahedral symmetry	162
	The icosahedron has high symmetry	163
	The simplest virus has a shell of 60 protein	105
	subunite	164
	Suburnits	104
	Complex spherical viruses have more than one	1.00
	polypeptide chain in the asymmetric unit	165
	Structural versatility gives quasi-equivalent	
	packing in $T = 3$ plant viruses	166
	The protein capsid of picorna viruses contains	
	four polypeptide chains	167
	There are four different structural proteins in	
	picorna viruses	168
	The arrangement of subunits in the shell of	
	picorna viruses is similar to that of $T = 3$	
	plant viruses	168
	The coat proteins of spherical plant and animal	
	viruses have similar structure, the jelly roll	
	barrel structure, indicating an evolutionary	
	relationship	169
	Drugs against common cold may be designed	
	from the structure of rhinovirus	171
	Bacteriophage MS2 has a different subunit	
	structure	173
	Both the core and the spikes of enveloped	1,0
	viruses have icosahedral symmetry	174
	The subunits in polyoma virus have	1/1
	nonoquivalent environments	174
	Conclusion	175
	Collected Decidings	170
	Selected Readings	1/0
12.	Recognition of Foreign Molecules by the	
	Immune System	179
	The polypeptide chains of antibodies are divided	
	into domains	181
	Antibody diversity is generated by several	101
	different mechanisms	127
	All immunoglobulin domains have similar	102
	three dimensional structure	100
	The immunoglobulin fold is best described as	100
	two antinarallel R sheets nacked tightly	
	against each other	18/
		104

xiii

	The hypervariable regions are clustered in loop regions at one end of the variable domain The antigen binding site is formed by close	185
	association of the hypervariable regions from both heavy and light chains	186
	crevices and protein antigens through large	188
	The structure of an idiotype–anti-idiotype	100
	complex has been determined	192
	An IgG molecule has several degrees of	
	conformational flexibility	193
	The structure of a human MHC molecule has	
	mechanism of T-cell activation	194
	Recognition of antigen is different in MHC	171
	compared to immunoglobulins	194
	Conclusion	197
	Selected Readings	199
13.	Membrane Proteins	201
	Membrane proteins are difficult to crystallize	202
	Bacteriorhodopsin contains seven	202
	The bacterial photosynthetic reaction center is	205
	built up from four different polypeptide	
	chains and many pigments	203
	The L, M, and H subunits have transmembrane α helices	205
	The photosynthetic pigments are bound to the	206
	Reaction centers convert light energy into	200
	electrical energy by electron flow through	
	the membrane	208
	The reaction center is a quantum-mechanical	
	tunneling device	209
	Transmembrane α helices can be predicted	200
	Hydrophobicity scales measure the degree of	209
	hydrophobicity of different amino acid side	
	chains	210
	Hydropathy plots identify transmembrane helices	210
	Reaction-center hydropathy plots agree with	011
	Crystal structural data Membrane linids have no specific interaction	211
	with protein transmembrane α helices	212
	Structural rearrangements convert a water-soluble	
	protein to a membrane-bound form	212
	Conclusion	213
	Selected Readings	214
14.	Receptor Families	217
	Tyrosine kinase growth factor receptors and	
	G-protein linked receptors form two	217
	The epidermal growth factor (EGF) receptor	<i>L</i> 1/
	folds into distinct domains	218
	The v-erb B oncogene is a coopted EGF receptor	
	gene	219

	The recentors for insulin and epidermal growth	
	factor are evolutionarily related	220
	The PDGF recentor is also a protein tyrosine	
	kinase receptor	221
	Similar mechanisms are used for signal	
	transduction across the membrane	221
	G proteins are molecular amplifiers	222
	G proteins are homologous in sequence to	
	elongation factor Tu and cH-ras p21	223
	Point mutation generates transforming ras	
	oncogenes	223
	A deletion mutant gene is used to produce	
	truncated p21	224
	The crystal structures of p21 and EF-Tu have	
	the same fold of their polypeptide chains	224
	Regions of conserved amino acid sequence	
	bind GTP	225
	Oncogenic activation is caused by mutations in	
	the GTP-binding loops	22.6
	The molecular basis of autophosphorylation of	
	viral p21	226
	Protein-protein interactions can modulate the	
	GTP-hinding and hydrolysis properties of	
	ras n21	227
	Recentors that utilize G proteins contain seven	
	transmembrane belices	2.2.7
	Conclusion	228
	Selected Readings	229
	beleeten neuumgo	
15.	An Example of Enzyme Catalysis:	
100	Serine Proteinases	231
	Proteinases form four functional families	231
	Proteinases form four functional families The catalytic properties of enzymes are reflected	231
	Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values	231 232
	Proteinases form four functional families The catalytic properties of enzymes are reflected in $K_{\rm m}$ and $k_{\rm cat}$ values Enzymes decrease the activation energy of	231 232
	Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions	231 232 232
	Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by	231 232 232
	Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by forming tetrahedral transition states	 231 232 232 232 234
	 Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by forming tetrahedral transition states Four essential structural features are required for 	 231 232 232 232 234
	Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by forming tetrahedral transition states Four essential structural features are required for the catalytic action of serine proteinases	 231 232 232 232 234 235
	Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by forming tetrahedral transition states Four essential structural features are required for the catalytic action of serine proteinases Convergent evolution has produced two different	231 232 232 232 234 235
	Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by forming tetrahedral transition states Four essential structural features are required for the catalytic action of serine proteinases Convergent evolution has produced two different serine proteinases with similar catalytic	231 232 232 234 235
	 Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by forming tetrahedral transition states Four essential structural features are required for the catalytic action of serine proteinases Convergent evolution has produced two different serine proteinases with similar catalytic mechanisms 	 231 232 232 234 235 236
	 Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by forming tetrahedral transition states Four essential structural features are required for the catalytic action of serine proteinases Convergent evolution has produced two different serine proteinases with similar catalytic mechanisms The chymotrypsin structure has two antiparallel 	 231 232 232 234 235 236
	 Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by forming tetrahedral transition states Four essential structural features are required for the catalytic action of serine proteinases Convergent evolution has produced two different serine proteinases with similar catalytic mechanisms The chymotrypsin structure has two antiparallel β-barrel domains 	 231 232 232 234 235 236 236
	 Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by forming tetrahedral transition states Four essential structural features are required for the catalytic action of serine proteinases Convergent evolution has produced two different serine proteinases with similar catalytic mechanisms The chymotrypsin structure has two antiparallel β-barrel domains The active site is formed by two loop regions 	 231 232 232 234 235 236 236
	 Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by forming tetrahedral transition states Four essential structural features are required for the catalytic action of serine proteinases Convergent evolution has produced two different serine proteinases with similar catalytic mechanisms The chymotrypsin structure has two antiparallel β-barrel domains The active site is formed by two loop regions from each domain 	 231 232 232 234 235 236 236 237
	 Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by forming tetrahedral transition states Four essential structural features are required for the catalytic action of serine proteinases Convergent evolution has produced two different serine proteinases with similar catalytic mechanisms The chymotrypsin structure has two antiparallel β-barrel domains The active site is formed by two loop regions from each domain Did the chymotrypsin molecule evolve by gene 	 231 232 232 234 235 236 236 237
	 Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by forming tetrahedral transition states Four essential structural features are required for the catalytic action of serine proteinases Convergent evolution has produced two different serine proteinases with similar catalytic mechanisms The chymotrypsin structure has two antiparallel β-barrel domains The active site is formed by two loop regions from each domain Did the chymotrypsin molecule evolve by gene duplication? 	231 232 232 234 235 236 236 236 237 238
	 Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by forming tetrahedral transition states Four essential structural features are required for the catalytic action of serine proteinases Convergent evolution has produced two different serine proteinases with similar catalytic mechanisms The chymotrypsin structure has two antiparallel β-barrel domains The active site is formed by two loop regions from each domain Did the chymotrypsin molecule evolve by gene duplication? Different side chains in the substrate specificity 	231 232 232 234 235 236 236 236 237 238
	 Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by forming tetrahedral transition states Four essential structural features are required for the catalytic action of serine proteinases Convergent evolution has produced two different serine proteinases with similar catalytic mechanisms The chymotrypsin structure has two antiparallel β-barrel domains The active site is formed by two loop regions from each domain Did the chymotrypsin molecule evolve by gene duplication? Different side chains in the substrate specificity pocket confer preferential cleavage 	231 232 232 234 235 236 236 236 237 238 238
	 Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by forming tetrahedral transition states Four essential structural features are required for the catalytic action of serine proteinases Convergent evolution has produced two different serine proteinases with similar catalytic mechanisms The chymotrypsin structure has two antiparallel β-barrel domains The active site is formed by two loop regions from each domain Did the chymotrypsin molecule evolve by gene duplication? Different side chains in the substrate specificity pocket confer preferential cleavage Engineered mutations in the substrate specificity 	231 232 232 234 235 236 236 236 237 238 238
	 Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by forming tetrahedral transition states Four essential structural features are required for the catalytic action of serine proteinases Convergent evolution has produced two different serine proteinases with similar catalytic mechanisms The chymotrypsin structure has two antiparallel β-barrel domains The active site is formed by two loop regions from each domain Did the chymotrypsin molecule evolve by gene duplication? Different side chains in the substrate specificity pocket confer preferential cleavage Engineered mutations in the substrate specificity pocket change the rate of catalysis 	231 232 232 234 235 236 236 236 237 238 238 238 239
	 Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by forming tetrahedral transition states Four essential structural features are required for the catalytic action of serine proteinases Convergent evolution has produced two different serine proteinases with similar catalytic mechanisms The chymotrypsin structure has two antiparallel β-barrel domains The active site is formed by two loop regions from each domain Did the chymotrypsin molecule evolve by gene duplication? Different side chains in the substrate specificity pocket confer preferential cleavage Engineered mutations in the substrate specificity pocket change the rate of catalysis The Asp 189-Lys mutant in trypsin has 	231 232 232 234 235 236 236 236 237 238 238 238 238
	 Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by forming tetrahedral transition states Four essential structural features are required for the catalytic action of serine proteinases Convergent evolution has produced two different serine proteinases with similar catalytic mechanisms The chymotrypsin structure has two antiparallel β-barrel domains The active site is formed by two loop regions from each domain Did the chymotrypsin molecule evolve by gene duplication? Different side chains in the substrate specificity pocket confer preferential cleavage Engineered mutations in the substrate specificity pocket change the rate of catalysis The Asp 189-Lys mutant in trypsin has unexpected changes in substrate specificity 	231 232 232 234 235 236 236 236 236 237 238 238 238 239 241
	 Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by forming tetrahedral transition states Four essential structural features are required for the catalytic action of serine proteinases Convergent evolution has produced two different serine proteinases with similar catalytic mechanisms The chymotrypsin structure has two antiparallel β-barrel domains The active site is formed by two loop regions from each domain Did the chymotrypsin molecule evolve by gene duplication? Different side chains in the substrate specificity pocket confer preferential cleavage Engineered mutations in the substrate specificity pocket change the rate of catalysis The Asp 189-Lys mutant in trypsin has unexpected changes in substrate specificity 	231 232 232 234 235 236 236 236 236 237 238 238 238 239 241
	 Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by forming tetrahedral transition states Four essential structural features are required for the catalytic action of serine proteinases Convergent evolution has produced two different serine proteinases with similar catalytic mechanisms The chymotrypsin structure has two antiparallel β-barrel domains The active site is formed by two loop regions from each domain Did the chymotrypsin molecule evolve by gene duplication? Different side chains in the substrate specificity pocket confer preferential cleavage Engineered mutations in the substrate specificity pocket change the rate of catalysis The Asp 189-Lys mutant in trypsin has unexpected changes in substrate specificity The structure of the serine proteinase subtilisin is of the α/β type 	231 232 232 234 235 236 236 236 236 237 238 238 238 239 241 241
	Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by forming tetrahedral transition states Four essential structural features are required for the catalytic action of serine proteinases Convergent evolution has produced two different serine proteinases with similar catalytic mechanisms The chymotrypsin structure has two antiparallel β -barrel domains The active site is formed by two loop regions from each domain Did the chymotrypsin molecule evolve by gene duplication? Different side chains in the substrate specificity pocket confer preferential cleavage Engineered mutations in the substrate specificity pocket change the rate of catalysis The Asp 189-Lys mutant in trypsin has unexpected changes in substrate specificity The structure of the serine proteinase subtilisin is of the α/β type The active sites of subtilisin and chymotrypsin	231 232 232 234 235 236 236 236 236 237 238 238 238 239 241 241
	Proteinases form four functional families The catalytic properties of enzymes are reflected in K_m and k_{cat} values Enzymes decrease the activation energy of chemical reactions Serine proteinases cleave peptide bonds by forming tetrahedral transition states Four essential structural features are required for the catalytic action of serine proteinases Convergent evolution has produced two different serine proteinases with similar catalytic mechanisms The chymotrypsin structure has two antiparallel β -barrel domains The active site is formed by two loop regions from each domain Did the chymotrypsin molecule evolve by gene duplication? Different side chains in the substrate specificity pocket confer preferential cleavage Engineered mutations in the substrate specificity pocket change the rate of catalysis The Asp 189-Lys mutant in trypsin has unexpected changes in substrate specificity The structure of the serine proteinase subtilisin is of the α/β type The active sites of subtilisin and chymotrypsin	231 232 232 234 235 236 236 236 236 237 238 238 238 238 239 241 241

A structural anomaly in subtilisin has functional	
consequences	243
Transition-state stabilization in subtilisin is	
dissected by protein engineering	243
Catalysis occurs without a catalytic triad	243
Substrate molecules provide catalytic groups in	
substrate-assisted catalysis	243
Conclusion	245
Selected Readings	245
-	

247
248
248
249
249
251
251
252
256
257
257
259
259
260
260

	Hydrogen bonds give small energy contributions	
	to ligand binding	261
	Hydrogen bonds involving charged groups	
	contribute more to specificity than those	
	between uncharged groups	262
	Circularly permuted α/β barrels fold correctly	263
	Protein structures can be designed from first	200
	principles	265
	Conclusion	265
	Collected Deedinge	200
	Selected Readings	207
17.	Determination of Protein Structures	269
	Several different techniques are used to study	
	the structure of protein molecules	269
	Protein crystals are difficult to grow	270
	X-ray sources are either monochromatic or	
	polychromatic	272
	X-ray data are recorded either on films or hy	
	electronic detectors	273
	The rules for diffraction are given by Bragg's law	273
	Phase determination is the major crystallographic	275
	problem	274
	Puilding a model involves subjective	2/1
	interpretation of the data	276
	Encert in the initial model are removed by	270
	Effors in the initial model are removed by	277
	remement	211
	Amino acid sequence is essential for x-ray	270
	structure determination	2/0
	Recent technological advances have greatly	070
	influenced protein crystallography	279
	NMR methods use the magnetic properties of	200
	atomic nuclei	280
	Two-dimensional NMR spectra of proteins are	
	interpreted by the method of sequential	
	assignment	281
	Distance constraints are used to derive possible	
	structures of a protein molecule	283
	Biochemical studies and molecular structure give	
	complementary functional information	284
	Conclusion	284
	Selected Readings	285

xv