# Introduction to Protein Structure 

Carl Branden

Uppsala Biomedical Center
Swedish University of Agricultural Sciences
Uppsala, Sweden

## John Tooze

European Molecular Biology Organization Heidelberg, Germany

Garland Publishing, Inc. New York and London, 1991

## THE COVER

Front: The background photograph of the cover is of a Laue x-ray diffraction pattern produced by a crystal of the plant enzyme ribulose bisphosphate carboxylase. This technique is described in Chapter 17. Information derived from such x-ray patterns, together with a knowledge of the amino acid sequence, enabled the three-dimensional arrangement of atoms in the protein to be determined. A simplified representation of this protein structure is shown in color, superimposed on the diffraction pattern. The enzyme, which is involved in the fixation of carbon dioxide, is a member of the large class of $\alpha / \beta$ barrel protein structures. This class of structures is discussed in detail in Chapter 4.

Back: Tomato bushy stunt virus is a spherical virus made from 180 protein subunits. Arms extending from sixty of these subunits contribute to an internal framework that determines the size of the correctly assembled virus particle. The interdigitated arms from three subunits meet at each of the twenty icosahedral threefold axes of the virus. One such axis is shown here with the $\beta$ strands from three subunits shown in different shades of green. Virus structure is described in more detail in Chapter 11.

## © 1991 Carl Branden and John Tooze

All rights reserved. No part of this book covered by the copyright hereon may be reproduced or used in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems-without permission of the publisher.

## Library of Congress Cataloging-in-Publication Data

Branden, Carl.
Introduction to protein structure / Carl Branden, John Tooze.
p. cm.

Includes index.
ISBN 0-8153-0344-0 - ISBN 0-8153-0270-3 (pbk.)

1. Proteins-Structure. I. Tooze, John. II. Title.

QP551.B7635 1991
574.19'245-dc20

Published by Garland Publishing, Inc.
136 Madison Ave., New York, New York, 10016
Printed in the United States of America

## Contents

## Protein Structure

Part 1 Basic Structural Principles ..... 1

1. The Building Blocks ..... 3
Proteins are polypeptide chains ..... 4
The genetic code specifies 20 different amino acid side chains ..... 4
Cysteines can form disulfide bridges
Peptide units are building blocks of protein ..... 5
structures ..... 8
Glycine residues can adopt many different conformations ..... 8
Conclusion ..... 9
Selected Readings ..... 10
2. Motifs of Protein Structure ..... 11
Few general principles emerged from the first protein structure ..... 11
The interior of proteins is hydrophobic ..... 12
The alpha ( $\alpha$ ) helix is an important element of secondary structure ..... 12
The $\alpha$ helix has a dipole moment ..... 13
Some amino acids are preferred in $\alpha$ helices ..... 13
Beta ( $\beta$ ) sheets usually have their beta ( $\beta$ ) strands either parallel or antiparallel ..... 15
Loop regions are at the surface of protein molecules ..... 18
Schematic pictures of proteins highlight secondary structure ..... 19
Topology diagrams are useful for classification of protein structures ..... 20
Secondary structure elements are connected into simple motifs ..... 21
The hairpin $\beta$ motif occurs frequently in protein structures ..... 23
The Greek key motif is found in antiparallel $\beta$ sheets ..... 24
The $\beta-\alpha-\beta$ motif contains two parallel $\beta$ strands ..... 24
Protein molecules are organized in a structural hierarchy ..... 26
Large polypeptide chains fold into several domains ..... 26
Domains are built from structural motifs ..... 27
Simple motifs combine to form complex motifs ..... 28
Protein structures can be divided into three main classes ..... 28
Conclusion ..... 29
Selected Readings ..... 30
3. Alpha-Domain Structures ..... 33
Two adjacent $\alpha$ helices are usually antiparallel ..... 33
The four-helix bundle is a common domain structure in $\alpha$ proteins ..... 33
The active site is between the $\alpha$ helices in four-helix bundle structures ..... 35
The globin fold is present in myoglobin and hemoglobin ..... 35
Geometric aspects determine $\alpha$-helix packing ..... 36
Ridges of one $\alpha$ helix fit into grooves of an adjacent helix ..... 36
The globin fold has been preserved during evolution ..... 37
The hydrophobic interior is preserved ..... 38
Helix movements accommodate interior side-chain mutations ..... 38
Sickle-cell hemoglobin confers resistance to malaria ..... 39
Conclusion ..... 40
Selected Readings ..... 41
4. Alpha/Beta Structures ..... 43
Parallel $\beta$ strands are arranged in barrels or sheets ..... 43
$\alpha / \beta$ barrels occur in many different enzymes ..... 44
Branched hydrophobic side chains dominate the core of $\alpha / \beta$ barrels ..... 45
Pyruvate kinase contains several domains, one of which is an $\alpha / \beta$ barrel ..... 46
Double barrels have occurred by gene fusion ..... 47
The active site is formed by loops at one end of the $\alpha / \beta$ barrel ..... 47
Stability and function are separated ..... 48
Was there an ancestral barrel? ..... 48
$\alpha / \beta$ twisted open-sheet structures contain $\alpha$ helices on both sides of the $\beta$ sheet ..... 49
Open $\beta$-sheet structures have different topologies ..... 49
The position of the active sites can be predicted in $\alpha / \beta$ structures ..... 51
Tyrosyl-tRNA synthetase has two different domains $(\alpha / \beta+\alpha)$ ..... 51
Carboxypeptidase is an $\alpha / \beta$ protein with mixed $\beta$ sheet ..... 53
Arabinose-binding protein has two similar $\alpha / \beta$ domains ..... 54
Conclusion ..... 56
Selected Readings ..... 56
5. Antiparallel Beta Structures ..... 59
Up-and-down barrels have a simple topology ..... 60
Retinol-binding protein folds into an up-and-down $\beta$ barrel ..... 60
Retinol is bound inside the $\beta$ barrel ..... 61
Amino acid sequence reflects $\beta$ structure ..... 62
The retinol-binding protein belongs to a superfamily of protein structures ..... 62
Retinol binding in humans and biliverdin binding in insects show evolutionary relationship ..... 62
Structure suggests function for $\beta$-lactoglobulin ..... 63
Neuraminidase folds into up-and-down $\beta$ sheets ..... 64
Folding motifs form a superbarrel in neuraminidase ..... 64
The active site is at one end of the superbarrel ..... 65
Greek key motifs occur frequently in the antiparallel $\beta$ structures ..... 66
The $\gamma$-crystallin molecule has two domains ..... 67
The domain structure has a simple topology ..... 68
Two Greek key motifs form the domain ..... 68
The two domains have identical topology ..... 69
The two domains have similar structures ..... 69
The Greek key motifs are evolutionarily related in $\gamma$ crystallin ..... 70
Intron positions separate the four Greek key motifs ..... 70
The Greek key motifs can form jelly roll barrels ..... 70
The jelly roll motif is wrapped around a barrel ..... 71
The jelly roll barrel is usually divided into two sheets ..... 71
A folding scheme has been suggested for the jelly roll barrel structure ..... 72
The hemagglutinin polypeptide chain folds into a complex structure ..... 72
The subunit structure is divided into a stem and a tip ..... 73
The hemagglutinin molecule is trimeric ..... 73
The receptor binding site is formed by the jelly roll domain ..... 74
Hemagglutinin acts as a membrane fusogen ..... 74
Conclusion ..... 74Selected Readings76
6. DNA Structures ..... 79
The DNA double helix is different in A- and B-DNA ..... 79
The DNA helix has major and minor grooves ..... 80
Z-DNA forms a zigzag pattern ..... 81
B-DNA is the preferred conformation in vivo ..... 81
Specific base sequences can be recognized in B-DNA ..... 82
Conclusion ..... 83
Selected Readings ..... 84
Part 2 Structure, Function, and Engineering ..... 85
7. DNA Recognition by Proteins with the Helix-Turn-Helix Motif ..... 87
A molecular mechanism for gene control is emerging ..... 87
Repressor and Cro proteins operate a procaryotic genetic switch region ..... 88
The x -ray structure of the complete lambda Cro protein is known ..... 89
The x -ray structure of the DNA-binding domain of the lambda repressor is known ..... 90
Both lambda Cro and repressor proteins have a specific DNA-binding motif ..... 91
Model building predicts Cro-DNA interactions ..... 92
Genetic studies agree with the structural model ..... 93
The x-ray structure of DNA complexes with 434 Cro and repressor revealed novel features of protein DNA interactions ..... 94
The structures of 434 Cro and 434 repressor- binding domains are very similar ..... 95
The B-DNA conformation is distorted in the complexes ..... 95
Conformational changes of DNA are important for differential repressor binding ..... 96
Sequence-specific protein-DNA interactions recognize operator regions ..... 96
Nonspecific protein-DNA interactions determine DNA conformation ..... 97
Local DNA structure modulates repressor binding ..... 98
The essence of phage repressor and Cro ..... 99
Amino acid sequence relations identify helix-turn-helix motifs ..... 99
Phage Cro and repressor proteins are evolutionarily related ..... 100
Cro and repressor have homologous sequences but partly different structures ..... 101
Sequence comparison using strong stereochemicalconstraints identifies helix-turn-helix motifs101
Sequence comparisons without usingstereochemical constraints do not identifyhelix-turn-helix motifs unambiguously103
DNA binding is regulated by allosteric control ..... 104
The trp repressor forms a helix-turn-helix motif ..... 104
A conformational change provides the molecular mechanism of the functional switch ..... 105
CAP is a positive control element ..... 106
The polypeptide chain of CAP folds into two domains ..... 106
A molecular mechanism has been suggested for the switch in CAP ..... 107
Met and arc repressors belong to a family of $\beta$-sheet DNA-binding proteins ..... 108
Conclusion ..... 109
Selected Readinds ..... 110
8. Structural Motifs of Eucaryotic Transcription Factors ..... 113
Transcription factors have two functionally different domains ..... 114
Three different families of zinc fingers have been observed ..... 115
The classic zinc finger has two cysteine andtwo histidine ligands bound to zinc
Two zinc fingers in the glucocorticoid receptor form one DNA-binding domain
Yeast transcription factor Gal 4 contains abinuclear zinc cluster in its DNA-bindingdomain119
Retroviral zinc fingers have one histidine and three cysteine residues bound to zinc ..... 120
Monomers of homeodomains bind to DNA through a helix-turn-helix motif ..... 121
Leucine zippers provide dimerization interactions for some eucaryotic DNA-binding proteins ..... 124
Conclusion ..... 126
Selected Readings ..... 127
9. DNA Polymerase Is a Multifunctional Enzyme ..... 129
The Klenow fragment of $E$. coli DNA polymerase I (Pol I) can be crystallized ..... 131
The Klenow fragment has two separate domains ..... 131
The large domain has a large binding cleft ..... 132
The large domain has polymerase activity ..... 132
The small domain has an $\alpha / \beta$ structure ..... 133
The small domain has $3^{\prime}-5^{\prime}$ exonuclease activity ..... 134
How the processivity and fidelity of DNA synthesis is achieved ..... 135
Comparison with other polymerases reveals evolutionary relationships ..... 136
DNA-binding proteins are constructed from modules ..... 137
Conclusion ..... 138
Selected Readings ..... 139
10. Enzymes That Bind Nucleotides ..... 141
The structures of several NAD-dependent dehydrogenases are known ..... 142
The dehydrogenase polypeptide chains are modular ..... 143
The NAD-binding domains have similar structures ..... 144
NAD binds in a similar way to each domain ..... 146
Hydride transfer to NAD is stereospecific ..... 147
Are the NAD-binding domains evolutionarily related? ..... 148
The NAD-binding motif can be predicted from amino acid sequence ..... 148
FAD- and NAD-binding domains have essential similarities ..... 151
Gene fusion has occurred between anFMN-binding $\alpha / \beta$ barrel and a cytochrome152
The cytochrome- $\mathrm{b}_{2}$ domain is homologous to mammalian cytochrome $b_{5}$ ..... 153
The FMN-binding domain is an $\alpha / \beta$ barrel ..... 154
Hexokinase validates the theory of induced fit ..... 155
Conclusion ..... 157
Selected Readings ..... 158
11. The Structure of Spherical Viruses ..... 161
The protein shells of spherical viruses have icosahedral symmetry ..... 162
The icosahedron has high symmetry ..... 163
The simplest virus has a shell of 60 protein subunits ..... 164
Complex spherical viruses have more than one polypeptide chain in the asymmetric unit ..... 165
Structural versatility gives quasi-equivalent packing in $\mathrm{T}=3$ plant viruses ..... 166
The protein capsid of picorna viruses contains four polypeptide chains ..... 167
There are four different structural proteins in picorna viruses ..... 168
The arrangement of subunits in the shell of picorna viruses is similar to that of $\mathrm{T}=3$ plant viruses ..... 168
The coat proteins of spherical plant and animal viruses have similar structure, the jelly roll barrel structure, indicating an evolutionary relationship ..... 169
Drugs against common cold may be designed from the structure of rhinovirus ..... 171
Bacteriophage MS2 has a different subunit structure ..... 173
Both the core and the spikes of enveloped viruses have icosahedral symmetry ..... 174
The subunits in polyoma virus have nonequivalent environments ..... 174
Conclusion ..... 175
Selected Readings ..... 176
12. Recognition of Foreign Molecules by the Immune System ..... 179
The polypeptide chains of antibodies are divided into domains ..... 181
Antibody diversity is generated by several different mechanisms ..... 182
All immunoglobulin domains have similar three-dimensional structure ..... 183
The immunoglobulin fold is best described atwo antiparallel $\beta$ sheets packed tightlyagainst each other184

The hypervariable regions are clustered in loop regions at one end of the variable domain185

The antigen binding site is formed by close association of the hypervariable regions from both heavy and light chains186

The antigen binding site binds haptens in
crevices and protein antigens through large
flat surfaces

The structure of an idiotype-anti-idiotype
complex has been determined ..... 192

An IgG molecule has several degrees of
conformational flexibility
The structure of a human MHC molecule has provided insights into the molecular mechanism of T-cell activation ..... 194
Recognition of antigen is different in MHC compared to immunoglobulins ..... 194
Conclusion ..... 197
Selected Readings ..... 199
13. Membrane Proteins ..... 201
Membrane proteins are difficult to crystallize ..... 202
Bacteriorhodopsin contains seven transmembrane $\alpha$ helices ..... 203
The bacterial photosynthetic reaction center is built up from four different polypeptide chains and many pigments ..... 203
The $L, M$, and $H$ subunits have transmembrane $\alpha$ helices ..... 205
The photosynthetic pigments are bound to the $L$ and $M$ subunits ..... 206
Reaction centers convert light energy into electrical energy by electron flow through the membrane ..... 208
The reaction center is a quantum-mechanical tunneling device ..... 209
Transmembrane $\alpha$ helices can be predicted from the amino acid sequence ..... 209
Hydrophobicity scales measure the degree of hydrophobicity of different amino acid side chains ..... 210
Hydropathy plots identify transmembrane helices ..... 210
Reaction-center hydropathy plots agree with crystal structural data ..... 211Membrane lipids have no specific interaction
with protein transmembrane $\alpha$ helices ..... 212
Structural rearrangements convert a water-soluble protein to a membrane-bound form ..... 212
Conclusion ..... 213
Selected Readings ..... 214
14. Receptor Families217
Tyrosine kinase growth factor receptors and G-protein linked receptors form two different receptor families ..... 217
The epidermal growth factor (EGF) receptor folds into distinct domains ..... 218
The $v$-erb $B$ oncogene is a coopted EGF receptor gene ..... 219
The receptors for insulin and epidermal growth factor are evolutionarily related ..... 220
The PDGF receptor is also a protein tyrosine kinase receptor ..... 221
Similar mechanisms are used for signal transduction across the membrane ..... 221
$G$ proteins are molecular amplifiers ..... 222
G proteins are homologous in sequence to elongation factor Tu and cH -ras p 21 ..... 223
Point mutation generates transforming ras oncogenes ..... 223
A deletion mutant gene is used to produce truncated p21 ..... 224
The crystal structures of p21 and EF-Tu have the same fold of their polypeptide chains ..... 224
Regions of conserved amino acid sequence bind GTP ..... 225
Oncogenic activation is caused by mutations in the GTP-binding loops ..... 226
The molecular basis of autophosphorylation of viral p21 ..... 226
Protein-protein interactions can modulate theGTP-binding and hydrolysis properties ofras p21227
Receptors that utilize $G$ proteins contain seven transmembrane helices ..... 227
Conclusion ..... 228
Selected Readings ..... 229
15. An Example of Enzyme Catalysis: Serine Proteinases ..... 231
Proteinases form four functional families ..... 231
The catalytic properties of enzymes are reflected in $K_{\mathrm{m}}$ and $k_{\text {cat }}$ values ..... 232
Enzymes decrease the activation energy of chemical reactions ..... 232
Serine proteinases cleave peptide bonds by forming tetrahedral transition states ..... 234
Four essential structural features are required for the catalytic action of serine proteinases ..... 235
Convergent evolution has produced two different serine proteinases with similar catalytic mechanisms ..... 236
The chymotrypsin structure has two antiparallel $\beta$-barrel domains ..... 236
The active site is formed by two loop regions from each domain ..... 237
Did the chymotrypsin molecule evolve by gene duplication? ..... 238
Different side chains in the substrate specificity pocket confer preferential cleavage ..... 238
Engineered mutations in the substrate specificity pocket change the rate of catalysis ..... 239
The Asp 189-Lys mutant in trypsin has unexpected changes in substrate specificity ..... 241
The structure of the serine proteinase subtilisin is of the $\alpha / \beta$ type ..... 241
The active sites of subtilisin and chymotrypsin are similar ..... 241

A structural anomaly in subtilisin has functional consequences
Transition-state stabilization in subtilisin is
dissected by protein engineering
Catalysis occurs without a catalytic triad 243
Substrate molecules provide catalytic groups in substrate-assisted catalysis
Conclusion 245
Selected Readings 245
16. Prediction, Engineering, and Design of Protein Structures
Prediction of protein structure from sequence is an unsolved problem

248

| $\begin{array}{l}\text { Many different amino acid sequences give similar } \\ \text { three-dimensional structures }\end{array}$ |  |
| :--- | :--- |

Amino acid sequence homology implies
similarity in structure and functions $\quad 249$
Homologous proteins have conserved structural cores and variable loop regions
Knowledge of secondary structure is necessary
for prediction of tertiary structure
Prediction methods for secondary structure have low accuracy
The tertiary fold of an enzyme has been
successfully predicted
Folded and unfolded proteins are almost equally
stable 256
Proteins can be made more stable by
engineering
Disulfide bridges increase protein stability 257
Glycine and proline have opposite effects on
stability
Stabilizing the dipoles of $\alpha$ helices increases
stability
Mutants that fill cavities in hydrophobic cores
do not stabilize T4 lysozyme
260
Binding energy in molecular recognition and specificity has been analyzed by protein engineering

Hydrogen bonds give small energy contributions
to ligand binding
Hydrogen bonds involving charged groups contribute more to specificity than those between uncharged groups262
Circularly permuted $\alpha / \beta$ barrels fold correctly ..... 263
Protein structures can be designed from first principles ..... 265
Conclusion ..... 266
Selected Readings ..... 267
17. Determination of Protein Structures ..... 269
Several different techniques are used to study the structure of protein molecules ..... 269
Protein crystals are difficult to grow ..... 270
X-ray sources are either monochromatic or polychromatic ..... 272
X-ray data are recorded either on films or by electronic detectors ..... 273
The rules for diffraction are given by Bragg's law ..... 273
Phase determination is the major crystallographic problem ..... 274
Building a model involves subjective interpretation of the data ..... 276
Errors in the initial model are removed by refinement ..... 277
Amino acid sequence is essential for x -ray structure determination ..... 278
Recent technological advances have greatly influenced protein crystallography ..... 279
NMR methods use the magnetic properties of atomic nuclei ..... 280
Two-dimensional NMR spectra of proteins are interpreted by the method of sequential assignment ..... 281
Distance constraints are used to derive possible structures of a protein molecule ..... 283
Biochemical studies and molecular structure give complementary functional information ..... 284
Conclusion ..... 284
Selected Readings ..... 285

