Introduction to Computer Methods for Microwave Circuit Analysis and Design

Janusz A. Dobrowolski

Warsaw University of Technology

Artech House Boston • London

Contents

PREFACE	2		xiii
Chapter 1	INTRODU	UCTION	1
Referen	ces		6
Chapter 2	MICROW	AVE CIRCUIT MATRIX REPRESENTATIONS	7
2.1.	Chain r	matrix representation	7
2.2.	Scattering matrix representation		14
	2.2.1.	Physical interpetation of scattering parameters	18
	2.2.2.	Change of reference impedance	21
2.3.	Transfe	er scattering matrix representation	22
	2.3.1.	Transfer scattering matrix of two-port elements	22
	2.3.2.	Generalized transfer scattering matrix representation	29
		Example 2.1	36
		Example 2.2	43
		Example 2.3	44
2.4.	Admitta	ance matrix representation	45
2.5.	Relatio	ns between different matrix representations of multiports	50
Referen	ces		52
Chapter 3	COMPUT	ER-AIDED ANALYSIS OF MICROWAVE CIRCUITS	53
3.1.	Microwave circuit analysis in terms of voltages and currents		53
	3.1.1.	Nodal admittance matrix method	54
		Example 3.1	54
	3.1.2.	Numerical considerations	63
	3.1.3.	Computation of circuit functions	64
	3.1.4.	Multiport connection method based on an indefinite	
		admittance matrix	66
	3.1.5.	Chain matrix method and its modifications	68
		Example 3.2	72
3.2.	Microwave circuit analysis in terms of wave variables		73
	3.2.1.	Connection scattering matrix method	73

Example 3.3	79
3.2.2. Multiport connection method	81
Example 3.4	84
Example 3.5	89
3.2.3. Transfer scattering matrix method	90
3.2.4. Generalized transfer scattering matrix method	92
Example 3.6	100
Example 3.7	104
References	105
Chapter 4 COMPLITER-AIDED SENSITIVITY ANALYSIS	
OF MICROWAVE CIRCUITS	107
4 1 Sensitivity definition	108
4.2 Tellegen's theorem	100
4.3 Sensitivity analysis of microwave networks described by	107
the nodal admittance matrix	113
4.3.1. The transposed matrix method	113
4.3.2 The direct method	115
4 3 3 Derivation of sensitivities of microwave circuits	110
described by the admittance matrices	116
4.3.4 Gradient vector computation of circuit functions	116
Example 4 1	121
4.4 Sensitivity analysis of microwave networks described by	121
the scattering matrix	124
4 4 1 The adjoint network method	124
4.4.2. Sensitivity invariants of scattering matrices and their	
use for evaluation of differential scattering matrices	127
Example 4.2	131
4.4.3. The transposed matrix method for networks described by	101
the connection scattering matrix	133
4.4.4. Derivation of sensitivities of microwave circuits	100
described by the scattering matrices	135
4.4.5. The sensitivity analysis direct method for networks	100
described by the connection scattering matrix	135
4.4.6. Gradient vector computation of circuit functions	142
4.4.7. Evaluation of group delay of microwave network	
transmission functions	147
Example 4.3	149
4.5. Second-order sensitivities of microwave networks	153
4.5.1. Second-order sensitivity analysis by the adjoint network	100
method	154
1.5.2 Transposed matrix method for the second order consitivity	, •

		analysis for networks described by the connection	
		scattering matrix	157
4.6.	Sensitiv	vity analysis of cascaded two-port networks	
	describe	ed by the chain matrices	158
Referen	ices		168
Chapter 5	COMPUT	ER-AIDED NOISE ANALYSIS	
•	OF MICR	OWAVE CIRCUITS	169
5.1.	Noise r	epresentation of noisy circuits	170
5.2.	Correla	tion matrices of noisy two-ports	179
5.3.	Relation	ns between different noise correlation matrices of	
	noisy ty	wo-ports	181
5.4.	Interco	nnections of noisy two-ports	181
5.5.	Correla	tion matrices of active two-ports and passive	
	multipo	orts	183
	Exampl	le 5.1	190
5.6.	Basic re	elationships for noisy two-ports	192
5.7.	Noise a	inalysis of cascaded two-ports	195
5.8.	Noise a	analysis of circuits composed of interconnected	
	two-poi	rts	196
	Examp	le 5.2	197
5.9.	Noise analysis of linear multiport networks of arbitrary		
	topolog	y by using the connection scattering matrix	199
	5.9.1.	The algorithm for noise figure computation of a general	
		multiport circuit	203
		Example 5.3	206
	5.9.2.	The algorithm for computing the four noise	
		parameters of a general multiport circuit	208
	5.9.3.	Noise power first-order sensitivities	211
	5.9.4.	Noise figure gradient computation	216
5.10.	Noise a	analysis of linear multiport networks of arbitrary	
	topolog	y by using the admittance matrix	217
	Examp	le 5.4	220
Referen	nces		226
Chapter 6	NUMERI	CAL METHODS FOR SOLVING SYSTEMS OF LINEAR	
••••• <u>•</u> ••••••••	ALGEBR	AIC EOUATIONS	229
6.1.	Gaussia	an elimination	230
	6.1.1.	Operation count	232
6.2.	LU dec	composition	233
	6.2.1.	Gauss's algorithm	234
	6.2.2.	Doolittle's algorithm	236
	6.2.3.	Crout's algorithm	239

	٠	-
	÷	L
٠	٠	٠

6.3.	Bifactorization		
6.4.	Pivoting		
6.5.	Numerical problems and error mechanisms	248	
	6.5.1. Numerical conditioning of a system of linear equations	248	
	6.5.2. Round-off error growth and proper choice of pivots	252	
6.6.	Complex matrix equations	253	
Referen	nces	254	
Chapter 7	SPARSE MATRIX TECHNIQUES	257	
7.1.	Storage schemes for sparse matrices	258	
	7.1.1. Static storage schemes with ordered lists	258	
	7.1.2. Dynamic storage schemes with linked lists	259	
7.2.	Pivot selection strategies for sparse matrices	261	
	7.2.1. Static (a priori) ordering	262	
	7.2.2. Dynamic ordering	262	
7.3.	Implementation of sparse matrix techniques	264	
	7.3.1. Compiled code techniques	266	
	7.3.2. Looping indexed code techniques	267	
	7.3.3. Interpretable code techniques	268	
Referen	nces	269	
Chapter 8	SPARSE MATRIX TECHNIQUES FOR ANALYSIS OF		
empter e	MICROWAVE CIRCUITS DESCRIBED BY THE CONNECTION		
	SCATTERING MATRIX	271	
8.1.	Characteristics of circuit equations with the connection		
	scattering matrix	272	
8.2.	Connection scattering matrix ordering strategy	273	
8.3.	Storage scheme of the connection scattering matrix	274	
8.4.	Procedure for generation of the indexing addressing and		
	ordering arrays	277	
8.5	Simulation and ordering procedure	278	
	8.5.1 Pivotal search—matrix ordering	279	
	8.5.2 Indexing and addressing modifications	280	
86	Reduction procedure	288	
87	Solution procedure	289	
Referen	nces	209	
Chantar (TO EDANCE ANALYSIS OF MICDOWAVE CIDCUITS	202	
	Fundamental concents	293	
9.1.	Putaministis televenes analysis	293	
9.2.	Deterministic tolerance analysis		
	9.2.1. worst-case tolerance analysis by the sensitivity approach	297	
	9.2.2. worst-case tolerance analysis by the large change	200	
0.2	sensitivity approach	298	
9.3.	Statistical tolerance analysis	300	

	9.3.1.	The method of statistical moments-computation of	
		statistical parameters of circuit functions	301
	9.3.2.	Computation of the yield by using the method of statistical	
		moments	306
	9.3.3.	Monte Carlo method for tolerance analysis	307
	9.3.4.	Generation of pseudorandom parameter values	308
	9.3.5.	Accuracy of the Monte Carlo method and required number	
		of samples	310
Referenc	es		313
Chapter 10	TOLERA	ANCE DESIGN OF MICROWAVE CIRCUITS	315
10.1.	Basic co	onsiderations	317
10.2.	Determ	inistic approach to tolerance design	319
10.3.	Statistic	cal approach to tolerance design	322
	10.3.1.	The gravity method	323
	10.3.2.	The parametric sampling method	323
10.4.	Worst-c	case design	328
Reference	es		329
Chapter 11	OPTIME	ZATION TECHNIQUES FOR MICROWAVE	
	CIRCUI	ΓDESIGN	331
11.1.	Basic co	oncepts and definitions	331
	11.1.1.	Definition of the optimization problem	331
	11.1.2.	Convexity	335
	11.1.3.	Constraints	335
		Example 11.1	338
	11.1.4.	Continuous functions and their derivatives	339
	11.1.5.	Conjugate directions	343
11.2.	Variabl	es and functions	344
	11.2.1.	The physical system and its simulation models	344
		Example 11.2	345
	11.2.2.	Design specifications and error functions	347
	11.2.3.	Objective functions in CAD of microwave circuits	351
		Example 11.3	355
		Example 11.4	356
		Example 11.5	358
		Example 11.6	360
11.3.	Basic g	radient-based methods for unconstrained function	
	minimi	zation	361
	11.3.1.	Steepest descent method	363
	11.3.2.	Conjugate gradient methods	364
	11.3.3.	The Newton method	366
	11.3.4.	Quasi-Newton methods	367
	11.3.5.	Line search	368

11.4.	Gradient-based methods for constrained function	
	minimization	370
	11.4.1. Kuhn-Tucker conditions	370
	11.4.2. Constrained quasi-Newton methods	373
	11.4.3. Penalty-multiplier methods (augmented Lagrangian methods)	377
11.5.	Multiple objective optimization	379
	11.5.1. Constrained Gauss-Newton methods for multiple objective	
	functions	381
	11.5.2. Constrained quasi-Newton methods for multiple objective	
	functions	385
	Example 11.7	389
	Example 11.8	390
References		393
Appendix 1	VECTOR AND MATRIX NORMS, RANKS	397
Appendix 2	SPARSE MATRIX SOLVER	401
Appendix 3	BASICS OF STATISTICAL ANALYSIS	417
INDEX		423