JOHN W. TUKEY

Princeton University and Bell Telephone Laboratories

Exploratory Data Analysis

ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts • Menlo Park, California London • Amsterdam • Don Mills, Ontario • Sydney •

Contents

1	SC	RATCHING DOWN NUMBERS (stem-and-leaf)	1
	Cor	nments about the index page	2
	1A	Quantitative detective work	1
	1 B	Practical arithmetic	3
	1C	Scratching down numbers	6
	1D	Doing better with stem-and-leaf	7
	1E	Using the right number of stems	11
	1F	How to count by tallying	16
	1G	What does it mean to "feel what the data are like"?	19
	1H	How far have we come?	20
	1K	How to use stem-and-leaf to pick up additional information (optional	
		technique)	23
	1 P	Additional problems	25
2	SC	HEMATIC SUMMARIES (pictures and numbers)	27
	-2A	Extremes and median	29
	2B	Hinges and 5-number summaries	32
	2C	Box-and-whisker plots	39
	2D	Fences, and outside values	43
	2E	Schematic plots	47
	2F	Pros and cons; the Rayleigh example	49
	2G	Eighths, sixteenths, etc.	53
	2H	How far have we come?	55
3	EA	SY RE-EXPRESSION	57
	3A	Logarithms = logs	59
	3B	Quick logs	61
	3C	Comparisons of two batches	64
	3D	Quick roots and quick reciprocals	69
	3E	Looking quickly	79
	3F	Counted data	83
	3G	Relation among powers and logs (optional)	86
	3H	How far have we come?	92
	3K	How to think about logs (background)	93
	3P	Additional problems	93
4	EFF	ECTIVE COMPARISON (including well-chosen expression)	97
	4A	Alternative forms of display of summaries	99
	4B	Comparing several batches (continued)	102
	4C	A more extensive example	105

	4D	The meaning of comparison	110
	4E	Adjustments, rough and exact	· 110
	4F	Residuals	113
	4H	How far have we come?	115
	4P	Additional problems	116
5	PLC	DTS OF RELATIONSHIP	125
	5A	How to plot y against x	126
	5B	Looking at subtraction	131
	5C	Subtracting straight lines	135
	5D	Plotting the population of the U.S.A.	141
	5E	Plotting the ratio of births to deaths	148
	5F	Untilting defines "tilt"	154
	5H	How far have we come?	156
	5P	Additional problems	157
6	STF	RAIGHTENING OUT PLOTS (using three points)	169
	6A	Looking at three points	171
	6B	Re-expressing y alone	172
	6C	Re-expressing x alone	175
	6D	A braking example	181
	6E	The vapor pressure of H_2O	18/
	6F	Re-expressing the second variable	191
	0G	Wise change of origin as a preliminary	193
	он 6Р	Additional problems	197
7	CM		205
/	3W	Mediana of 2	205
	7 D	Eve respective	210
	7D	Lyc resinoothing	214
	70 70	Conving on and more usually	210
	7E	Blurring the smooth and setting the fences	221
	7E	Splitting neaks and valleys	223
	7G	Honning	227
	7H	How far have we come?	235
7+	OP.	TIONAL SECTIONS FOR CHAPTER 7	237
•	71	Breaking a smooth	237
	7J	Choice of expression	247
	7K	A two-section example	259
	7M	How much more may we have learned?	264
8	PAI	RALLEL AND WANDERING SCHEMATIC PLOTS	265
	8A	Parallel schematic plots	265
	8B	Smoothing the cross-medians	274
	8C	Smoothing broken hinges	276
	8D	Dealing with the two questions	279

	8E V	Wandering schematic plots	283
	8F A	A more demanding example: Governor's salary and bank deposits	287
	8G I	Further questions/analysis in the example	298
	8H I	How far have we come?	306
	8I]	The need to smooth both coordinates (optional)	307
9	DELI	NEATIONS OF BATCHES OF POINTS	309
	9A I	E-traces and D-traces	309
	9B S	Simple delineationTwin Rivers again	311
	9C I	Reduced and schematic delineations	313
	9D \	What our schematic plots and delineations have missed	319
	9E 1	Three variables at onceor more	321
	9H I	How far have we come?	329
<u>10</u>	USIN	IG TWO-WAY ANALYSES	331
	10A	Two-way residuals; row-PLUS-column analysis	332
	10B	The row-PLUS-column fit	337
	10C	Some points of technique	343
	10D	Row-TIMES-column analysis	344
	10E	Looking at row-PLUS-column fits and their residuals	349
	10F	Fitting one more constant	352
	10G	Converting PLUS to TIMES; re-expression	308
	IOH	How far have we come?	360
11	MÁK	ING TWO-WAY ANALYSES	362
		Taking medians out	363
		Alternative organizations of the arithmetic	372
		Making the core of a two-way plot	3/4
		Going on with the residuals	3/8
	TIE	Coding residuals; condensing fits and residuals	382
		We can combine!	390
	110	Guidance for expression	200
	ПН	How far have we come?	399
11+	OPTI	ONAL SECTIONS FOR CHAPTERS 10 AND 11	401
	111	Exploring beyond PLUS-one (extends Chapter 10)	401
	111	Taking out any summary	404
		An example of re-expressioncity killings	408
		An unusual fit	415
	IIM	How much more may we have learned?	419
12	ADVANCED FITS		
	12A	PLUS-one fits	421
	12 B	Pictures for "-PLUS-one" fits	424
	12C	Making those pictures	428
	12D	Sometimes we can have parallel-line plots, still	431
	12E	More extended fits	433
	125	Simplification is sometimes possible	438
	12H	How far have we come?	441

13	THR	EE-WAY FITS	443
	13A	Three- and more-way analyses: Arrangement and tagging	443
	1 3B	An analysis of the psychological example	448
	13C	Making three-way analyses	452
	13D	Three-way re-expression	458
	13E	More about the example	462
	1 3H	How far have we come?	465
14	L00	KING IN TWO OR MORE WAYS AT BATCHES OF POINTS	466
	14A	Coordinates and level traces	467
	14B	Different middle traces for the same slices	470
	14C	An explanation	475
	14D	Changing the slicing coordinate	476
	14E	What matters?	481
	14F	Rematching and strength of relationship	482
	14H	How far have we come?	491
	14I	The ubiquity of medians (optional section)	492
15	COU	INTED FRACTIONS	494
	15A	Started counts and counted fractions	496
	15 B	Three matched scales for counted fractions	498
	15C	Quicker calculation	502
	15D	Examples where careful expression clearly pays off	508
	15E	Double foldingthe 2×2 case	513
	15F	Double foldinglarger cases	516
	15G	Easy froots and flogs with a slide rule (optional)	520
	15H	How far have we come?	522
16	BET	TER SMOOTHING	523
	16A	Reroughing	523
	16B	Some examples	526
	16C	If we want things still smoother	531
	16D	Further possibilities	534
	16H	How far have we come?	542
17	COU	NTS in BIN after BIN	543
	17A	Root smooth and root rough	543
	1 7B	Counts of basic counts	550
	17C	Fitting to smoothed roots	555
	17D	Corn borers, wheat prices, and Student's simulations	561
	17E	Bins of unequal width	570
	17 F	Double roots	576
	17G	Cautionary examples	582
	17H	How far have we come?	587
18	PRO	DUCT-RATIO PLOTS	588
	18A	Sizes and counts	589
	18 B	Product-ratio analysis	594
	18C	Forcing the unusual to be noticed	598

	18D Comparisons between collections	602
	18E Looking at the smallest basic count	604
	18F When zeros are counted	605
	18G Under the microscope	608
	18H How far have we come?	612
19	SHAPES OF DISTRIBUTION	614
	19A Looking at shapes of distribution	616
	19B The Gaussian reference	623
	19C Using letter values to look at shapes of distribution	626
	19D Pushback technique (optional section)	637
	19H How far have we come?	644
20	MATHEMATICAL DISTRIBUTIONS	646
	20A Binnings vs. distributions	648
	20B Densities for distributions vs. densities for binnings	651
	20C Tables and pictures comparing two sets of shapes of distributions	654
	20H How far have we come?	661
21	POSTSCRIPT	662
	21A Our relationship to the computer	663
	21B What has been omitted?	664
	21C How should the past chapters look different?	665
	21D What have we been introduced to?	666
	GLOSSARY	667
	INDEX TO REFERENCE TABLES	677
	ALPHABETICAL INDEX	677
	FRONTPAPERS 1. Break table for two-decimal logs	
	2 Desch table for (any m) as to	

- 2. Break table for (square) roots
- 3. Main break table--digits of negative reciprocals

REARPAPERS

- 4. Pluralities, folded roots, folded logarithms
- 5. Values of $\log_e \sqrt{\operatorname{count} + \frac{1}{6}}$ 6. Values of $\sqrt{\operatorname{count} + \frac{1}{6}}$