Sigeru Torii

# **Electroorganic Reduction Synthesis**

Volume 2





WILEY-VCH Verlag GmbH & Co. KGaA

Sigeru Torii Professor Emeritus, Okayama University, Japan

This book was carefully produced. Nevertheless, authors and publisher do not warrant the information contained therein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural detailes or other items may inadvertently be inaccurate.

Published jointly by Kodansha Ltd., Tokyo (Japan), WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (Federal Republic of Germany)

Library of Congress Card No. : applied for.

#### **British Library Cataloguing-in-Publication Data**

A catalogue record for this book is available from the British Library.

### Bibliographic information published by Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutche Nationalbibliografie; detailed bibliographic data is available in the Internet at <a href="http://dnb.ddb.de">http://dnb.ddb.de</a>>.

ISBN 4-06-213081-5 (KODANSHA) ISBN 3-527-31539-X (WILEY-VCH) ISBN 978-3-527-31539-0 (WILEY-VCH)

Copyright © Kodansha Ltd., Tokyo, 2006

All rights reserved. No part of this book may be reproduced in any form, by photostat, microfilm, retrieval system, or any other means, without the written permission of Kodansha Ltd. (except in the case of brief quotation for criticism or review)

Printed in Japan

## Contents

| Preface                                                             | v     |
|---------------------------------------------------------------------|-------|
| 8. Electroreduction of Alcohols, Ethers and Esters                  | 433   |
| 8.1 Reduction of Alcohols                                           | 433   |
| 8.2 Reductive Removal of Alcohols and Phenols                       | 434   |
| 8.2.1 Reduction of Methanesulfonates, Triflates and Other Esters    | 434   |
| 8.2.2 Electroreductive Etherification and Transesterification       | 437   |
| 8.3 Reductive Cleavages of Carbon-Oxygen Bonds                      |       |
| 8.3.1 Reductive Cleavage of Oxiranes (Epoxides)                     | 439   |
| 8.3.2 Reductive Cleavage of Carbon-Oxygen Bonds Other than Epoxides |       |
| 8.3.3 Reductive Cleavage of Peroxides                               |       |
| 8.4 Miscellaneous                                                   | . 447 |
| References                                                          | . 448 |

| 9. ] | Elect  | roreduction of Organic Compounds Involving Group IIIA, IVA, VA,   |     |
|------|--------|-------------------------------------------------------------------|-----|
| ]    | IB an  | d IIB Elements                                                    | 451 |
| 9.1  | Re     | duction of Organic Compounds Containing Group IIIA, IVA and       |     |
|      | VA     | Elements                                                          | 451 |
| 9.   | .1.1   | Reduction of Organosilicon Compounds                              |     |
| 9    | .1.2   | Reduction of Organotin Compounds                                  | 465 |
| 9    | .1.3   | Reduction of Organolead Compounds                                 | 470 |
| 9    | .1.4   | Reduction of Organogermane Compounds                              | 472 |
| 9    | .1.5   | Reduction of Organic Compounds Containing Group VB                | 474 |
| 9    | .1.6   | Reduction of Organic Compounds Containing Group IIIB Elements     | 483 |
| 9.2  | Re     | duction of Organic Compounds Containing Group IB and IIB Elements | 484 |
| 9    | .2.1   | Reduction of Organomercury Compounds                              | 484 |
| 9    | .2.2   | Reduction of Organic Compounds Containing Zn and Cd               | 488 |
| 9    | .2.3   | Reduction of Organic Compounds Containing Group IB Elements       | 491 |
|      | 9.2.3  | .1 Reduction of Organocopper Compounds                            | 491 |
|      | 9.2.3  | .2 Reduction of Organosilver and Organogold Compounds             | 494 |
| Ref  | ferenc | Des                                                               | 495 |

| 10. | Ele  | ectroreduction of Organometallic Compounds                               | 501 |
|-----|------|--------------------------------------------------------------------------|-----|
|     |      | Electroreduction of Organo-Metal Complexes Involving Group VIII Elements |     |
|     |      | (Ni, Co and Fe)                                                          | 501 |
|     | 10.1 | .1 Reactions of Organo-Nickel Complexes                                  | 501 |

| 10.1.2 Reactions of Organo-Cobalt Complexes                                 | 506 |
|-----------------------------------------------------------------------------|-----|
| 10.1.3 Reactions of Organo-Iron Complexes                                   | 514 |
| 10.1.4 Precious Metal Complexes (Pd, Pt, Rh and Ir)                         | 521 |
| 10.1.4.1 Reactions of Organo-Palladium Complexes                            | 521 |
| 10.1.4.2 Reactions of Organo-Platinum Complexes                             | 524 |
| 10.1.4.3 Reactions of Organo-Rhodium and Organo-Iridium Complexes           | 526 |
| 10.1.5 Reactions of Ruthenium and Osmium Compounds (Ru, Os)                 | 529 |
| 10.1.5.1 Reactions of Organo-Ruthenium Complexes.                           | 529 |
| 10.1.5.2 Reactions of Organo-Osmium Complexes                               | 531 |
| 10.2 Electroreduction of Organo-Metal Complexes Involving Group VIB, VB and |     |
| VIIB Elements (Cr, Mo, IV, Mn, Re, Ti)                                      | 532 |
| 10.2.1 Reactions of Organo-Metal Complexes (Cr, Mo and W)                   | 532 |
| 10.2.1.1 Reactions of Organo-Chromium Complexes                             | 532 |
| 10.2.1.2 Reactions of Organo-Molybdenum Complexes                           | 535 |
| 10.2.1.3 Reactions of Organo-Tungsten Complexes                             | 540 |
| 10.2.2 Organo-Metal Complexes Containing (Mn and Re)                        | 542 |
| 10.2.2.1 Reactions of Organo-Manganese Complexes                            | 542 |
| 10.2.2.2 Reactions of Organo-Rhenium Complexes                              | 543 |
| 10.2.3 Organo-Metal Complexes Containing Group IVB and VB Elements          |     |
| Ti, Hf, V, Nb, Ta                                                           | 544 |
| 10.2.3.1 Organo-Metal Complexes Containing Ti and Zr                        | 544 |
| 10.2.3.2 Organo-Metal Complexes Containing V and Nb                         | 544 |
| 10.3 Organo-Metal Complexes Involving Lanthanides                           | 545 |
| References                                                                  | 546 |
|                                                                             |     |

## 11. Indirect Electroreduction Using Metal Complex Redox and Organic Redox Indirect Electroreduction with Mediators Having Group VIII Elements ...... 554 11.111.1.1 Mediators Containing Nickel, Cobalt and Iron...... 554 11.1.1.1 Nickel Complex Mediators ...... 554 11.1.1.3 Iron Complex Mediators ...... 575 11.1.2 Mediators Containing Palladium, Rhodium, Iridium and Platinum ...... 581 11.1.3 Mediators Containing Ruthenium and Osmium ...... 589 Indirect Electroreduction with Mediators Having Group VIB and 11.211.2.1 Mediators Containing Chromium, Molybdenum and Tungsten ...... 593 11.2.1.2 Molybdenum Complex Mediators ...... 596 11.2.2 Mediators Containing Manganese and Rhenium ...... 599

| 11.2.2.1 Manganese Complex Mediators                                                                      | 599 |
|-----------------------------------------------------------------------------------------------------------|-----|
| 11.2.2.2 Rhenium Complex Mediators                                                                        | 600 |
| 11.3 Indirect Electroreduction with Mediators Having Group IV, IIB and                                    |     |
| VIA Elements                                                                                              | 601 |
| 11.3.1 Mediators Containing Titanium, Tin and Lead                                                        | 601 |
| 11.3.1.1 Titanium Complex Mediators                                                                       | 601 |
| 11.3.1.2 Tin Complex Mediators                                                                            | 603 |
| 11.3.1.3 Lead Complex Mediators                                                                           |     |
| 11.3.2 Mediators Containing Zinc, Mercury and Cadmium                                                     | 605 |
| 11.3.2.1 Zinc Complex Mediators                                                                           | 605 |
| 11.3.2.2 Mercury and Cadmium Complex Mediators                                                            | 607 |
| 11.3.3 Mediators Containing Selenides or Tellurides                                                       | 609 |
| 11.4 Miscellaneous Metal Complex Mediators                                                                |     |
| 11.4.1 Samarium-catalyzed Reactions                                                                       | 611 |
| 11.4.2 Use of Mediators Containing Antimony (Stubium) and Bismuth                                         |     |
| 11.4.3 Copper-catalyzed Reactions                                                                         | 613 |
| 11.5 Indirect Electroreduction with Organic Redox Mediators                                               | 614 |
| 11.5.1 Enzymatic Organic Redox Mediators                                                                  | 614 |
| 11.5.1.1 NAD and NADP Coenzymes and Methylviologen as Organic Redox                                       |     |
| Mediators                                                                                                 |     |
| 11.5.1.2 NAD <sup>+</sup> /NADH, MV <sup>2+</sup> /MV <sup>+</sup> Double Mediatory Organic Redox Systems | 616 |
| 11.5.1.3 Miscellaneous Bioorganic Mediators                                                               | 621 |
| 11.5.2 Nonbiological Organic Redox Mediators                                                              | 622 |
| References                                                                                                |     |
|                                                                                                           |     |

| 12. Electrogenerated Base-assisted Conversion                                |
|------------------------------------------------------------------------------|
| 12.1 Role of Electrogenerated (EG) Bases in Electrosynthetic Reactions       |
| 12.2 Electrogenerated Anion-radicals and Carbanions as EG Bases              |
| 12.2.1 EG Bases from Carbonyl Compounds                                      |
| 12.2.1.1 Reaction of EG Bases (Anion Radicals and Carbanions) from           |
| Carbonyl Compounds                                                           |
| 12.2.1.2 Reaction of Carbanions Stabilized by Carbonyl Groups 64             |
| 12.2.2 Reaction of Carbanions Stabilized by Cyano Groups                     |
| 12.2.3 Reaction of Carbanions Adjacent to Halogen Atoms                      |
| 12.2.4 Reaction of Carbanions Adjacent to Aromatic Systems                   |
| 12.2.5 Reaction of Carbanions Adjacent to Hetero Atoms                       |
| 12.2.6 Reaction of EG Bases from Alkyl and Aryl Halides                      |
| 12.3 Electrogenerated Amide Ions as EG Bases                                 |
| 12.3.1 Reaction of EG Bases Derived from Azo Compounds                       |
| 12.3.2 Reaction of EG Bases Derived from Carbonylated Nitrogen Compounds 670 |
| 12.3.3 Reaction of EG Bases from Miscellaneous Nitrogen Compounds            |
| 12.4 Miscellaneous EG Bases                                                  |
| 12.4.1 Reaction of EG Bases from Miscellaneous Systems                       |
| 12.4.2 Reaction of Superoxides as EG Bases                                   |
| 12.4.2.1 Generation and Characteristic Features of Superoxide                |
| 12.4.2.2 Reaction of Superoxides as EG Bases                                 |

| 12.4.2.3 Reaction of Superoxide as a Nucleophile and | an Oxidant 693 |
|------------------------------------------------------|----------------|
| References                                           | 698            |

| 13. Electropolymerization                                                     | 703 |
|-------------------------------------------------------------------------------|-----|
| 13.1 Electronic Conducting Polymers                                           |     |
| 13.1.1 Polypyrrole Conducting Polymers                                        | 703 |
| 13.1.1.1 Electropolymerization of Pyrroles and Doping of Polypyrroles         | 705 |
| 13.1.1.2 Polypyrroles as Modified Electrodes, Membranes, Batteries and Others | 710 |
| 13.1.1.3 Miscellaneous Pyrrole Conducting Polymers                            | 713 |
| 13.1.2 Polythiophene Conducting Polymers                                      | 715 |
| 13.1.2.1 Electropolymerization of Thiophene and Doping of Polythiophenes      | 716 |
| 13.1.2.2 Polythiophene Films in Rechargeable Storage Batteries                | 723 |
| 13.1.3 Aromatic Conjugated Polymers                                           | 724 |
| 13.1.3.1 Electropolymerization of Aromatic Hydrocarbons and Doping of         |     |
| Aromatic Conjugated Polymers                                                  | 724 |
| 13.1.3.2 Polyphenylenes as Rechargeable Battery Electrode Materials           | 729 |
| 13.1.4 Polyacetylene Conducting Polymers                                      | 730 |
| 13.1.4.1 <i>n</i> - and <i>p</i> -Type Doped Polyacetylenes                   | 731 |
| 13.1.4.2 Polyacetylene Films in Rechargeable Storage Batteries                | 733 |
| 13.1.4.3 Miscellaneous Conducting Polymers                                    | 734 |
| 13.1.5 Polyaniline Conducting Polymers                                        |     |
| 13.1.5.1 Electropolymerization of Anilines and Doping of Polyanilines         | 735 |
| 13.1.5.2 Conducting Polymers from Other Aromatic Amines                       | 738 |
| 13.1.6 Miscellaneous Conducting Polymers                                      | 739 |
| 13.1.6.1 Electropolymerization of Miscellaneous Compounds                     | 739 |
| 13.1.6.2 Electrodes Modified with Conducting Polymers                         | 741 |
| 13.2 Electrochemically Associated Polymers                                    | 743 |
| 13.2.1 Electroinitiated Polymerization                                        | 743 |
| 13.2.1.1 Electroinitiated Polymerization of Aliphatic Olefins                 | 743 |
| 13.2.1.2 Electroinitiated Polymerization of Aromatic Olefins                  | 748 |
| 13.2.1.3 Small Ring-Opening Electropolymerization                             | 751 |
| 13.2.1.4 Electroinitiated Polymerization of Phenols                           | 751 |
| 13.2.1.5 Electroinitiated Polymerization of Miscellaneous Compounds           | 753 |
| 13.2.2 Electrochemical Behaviors of Polymers                                  | 754 |
| 13.2.2.1 Fluorine Atom-containing Polymers                                    | 754 |
| 13.2.2.2 Polymers Bearing Quinone Moieties                                    | 755 |
| 13.2.2.3 Polymers Bearing Pyridyl Moieties                                    | 756 |
| 13.2.2.4 Polymers Bearing Porphyrinic and Phthalocyanyl Moieties              | 758 |
| References                                                                    | 759 |

| <b>ppendix</b> |
|----------------|
|----------------|

### Contents xi

| Abbreviations and Symbols | xiii |
|---------------------------|------|
| Index                     | xvii |

## Contents for Volume 1

| 1. | Electrochemical Reduction and Product Selectivity                         | 1   |
|----|---------------------------------------------------------------------------|-----|
| 2. | Electroreduction of Aldehydes, Ketones, Acids, Esters and Acids Anhydride | 39  |
| 3. | Electroreductive Reaction of Olefins                                      | 127 |
| 4. | Electroreductive Reaction of Aromatic Compounds                           | 161 |
| 5. | Electroreduction of Nitrogen Compounds                                    | 185 |
| 6. | Electroreduction of Sulfur, Selenium and Tellurium<br>Compounds           | 277 |
| 7. | Electroreduction of Halogenated Compounds                                 | 331 |