THE ART OF COMPUTER SYSTEMS PERFORMANCE ANALYSIS

Techniques for Experimental Design, Measurement, Simulation, and Modeling

RAJ JAIN Digital Equipment Corporation Littleton, Massachusetts

JOHN WILEY & SONS, INC.

New York / Chichester / Brisbane / Toronto / Singapore

CONTENTS

Lis	t of Bo	Xes	xxv
Lis	t of Ca	se Studies	xxvii
PA	RT I	AN OVERVIEW OF PERFORMANCE	
	EVA	LUATION	1
1	Introd	duction	3
	1.1	Outline of Topics, 3	
	1.2	The Art of Performance Evaluation, 7	
	1.3	Professional Organizations, Journals, and Conferences, 8	
	1.4	Performance Projects, 11	
		Exercise, 12	
2	Comr	non Mistakes and How to Avoid Them	14
	2.1	Common Mistakes in Performance Evaluation, 14	
	2.2	A Systematic Approach to Performance Evaluation, 22	
		Exercises, 28	

xiii

3	Select	tion of Techniques and Metrics	30
	3.1 3.2	Selecting an Evaluation Technique, 30 Selecting Performance Metrics, 33	
	3.3	Commonly Used Performance Metrics, 37	
	3.4	Utility Classification of Performance Metrics, 40	
	3.5	Setting Performance Requirements, 41	
		Exercises, 43	
Fur	ther R	eading for Part I	44
PA	RT II	MEASUREMENT TECHNIQUES AND TOOLS	45
4	Туре	s of Workloads	47
	4.1	Addition Instruction, 48	
	4.2	Instruction Mixes, 48	
	4.3	Kernels, 49	
	4.4	Synthetic Programs, 50	
	4.5	Application Benchmarks, 51	
	4.6	Popular Benchmarks, 52	
		Exercises, 59	
5	The	Art of Workload Selection	60
	5.1	Services Exercised, 60	
	5.2	Level of Detail, 66	
	5.3	Representativeness, 67	
	5.4	Timeliness, 68	
	5.5	Other Considerations in Workload Selection, 69	
		Exercises, 69	
(6 Wor	kload Characterization Techniques	71
	6.1	Terminology, 71	
	6.2	Averaging, 73	
	6.3	Specifying Dispersion, 73	
	6.4	Single-Parameter Histograms, 75	
	6.5	5 Multiparameter Histograms, 76	
	6.6	5 Principal-Component Analysis, 70	
	6.1	7 Markov Models, 81	

6.8	Clustering,	83
	Exercises,	91

7 Monitors

- 7.1 Monitor Terminology, 94
- 7.2 Monitor Classification, 94
- 7.3 Software Monitors, 95
- 7.4 Hardware Monitors, 98
- 7.5 Software versus Hardware Monitors, 98
- 7.6 Firmware and Hybrid Monitors, 100
- 7.7 Distributed-System Monitors, 101 Exercises, 109

8 Program Execution Monitors and Accounting Logs 111

- 8.1 Program Execution Monitors, 111
- 8.2 Techniques for Improving Program Performance, 114
- 8.3 Accounting Logs, 114
- 8.4 Analysis and Interpretation of Accounting Log Data, 117
- 8.5 Using Accounting Logs to Answer Commonly Asked Questions, 119
 Exercise, 122

9 Capacity Planning and Benchmarking

- 9.1 Steps in Capacity Planning and Management, 124
- 9.2 Problems in Capacity Planning, 125
- 9.3 Common Mistakes in Benchmarking, 127
- 9.4 Benchmarking Games, 130
- 9.5 Load Drivers, 131
- 9.6 Remote-Terminal Emulation, 132
- 9.7 Components of an RTE, 133
- 9.8 Limitations of Current RTEs, 136 Exercises, 138

10 The Art of Data Presentation

- 10.1 Types of Variables, 140
- 10.2 Guidelines for Preparing Good Graphic Charts, 141
- 10.3 Common Mistakes in Preparing Charts, 144
- 10.4 Pictorial Games, 146

93

139

123

	10.5	Gantt Charts, 150	
	10.6	Kiviat Graphs, 153	
	10.7	Schumacher Charts, 160	
	10.8	Decision Maker's Games, 161	
		Exercises, 163	
11	Ratio	Games	165
	11.1	Choosing an Appropriate Base System, 165	
	11.2	Using an Appropriate Ratio Metric, 167	
	11.3	Using Relative Performance Enhancement, 168	
	11.4	Ratio Games with Percentages, 169	
	11.5	Strategies for Winning a Ratio Game, 170	
	11.6	Correct Analysis, 174	
		Exercises, 174	
Fur	ther Re	eading for Part II	175
_			177
PA	RT III	PROBABILITY THEORY AND STATISTICS	177
12	Sumn	narizing Measured Data	179
	12.1	Basic Probability and Statistics Concepts, 179	
	12.2	Summarizing Data by a Single Number, 182	
	12.3	Selecting among the Mean, Median, and Mode, 183	
	12.4	Common Misuses of Means, 186	
	12.5	Geometric Mean, 187	
	12.6	Harmonic Mean, 188	
	12.7	Mean of a Ratio, 189	
	12.8	Summarizing Variability, 192	
	12.9	Selecting the Index of Dispersion, 195	
	12.10	Determining Distribution of Data, 196	
		Exercises, 200	
13	Com	paring Systems Using Sample Data	203
	13.1	Sample versus Population, 203	
	13.2	Confidence Interval for the Mean, 204	
	13.3	Testing for a Zero Mean, 207	
	13.4	Comparing Two Alternatives, 208	

- 13.6 Hypothesis Testing versus Confidence Intervals, 213
- 13.7 One-Sided Confidence Intervals, 214
- 13.8 Confidence Intervals for Proportions, 215
- 13.9 Determining Sample Size, 216 Exercises, 218

14 Simple Linear Regression Models

- 14.1 Definition of a Good Model, 222
- 14.2 Estimation of Model Parameters, 223
- 14.3 Allocation of Variation, 226
- 14.4 Standard Deviation of Errors, 228
- 14.5 Confidence Intervals for Regression Parameters, 229
- 14.6 Confidence Intervals for Predictions, 232
- 14.7 Visual Tests for Verifying the Regression Assumptions, 234 Exercises, 241

15 Other Regression Models

15.1	Multiple	Linear	Regression	Models,	245
				,	

- 15.2 Regression with Categorical Predictors, 254
- 15.3 Curvilinear Regression, 257
- 15.4 Transformations, 259
- 15.5 Outliers, 265
- 15.6 Common Mistakes in Regression, 266 Exercises, 270

Further Reading for Part III

PART IV EXPERIMENTAL DESIGN AND ANALYSIS 273

16	Introduction to Experimental Design		
	16.1	Terminology, 275	
	16.2	Common Mistakes in Experimentation, 278	
	16.3	Types of Experimental Designs, 279	
		Exercise, 282	

221

244

272

283 17 2^k Factorial Designs 2² Factorial Designs, 284 17.1 Computation of Effects, 285 17.2 Sign Table Method for Calculating Effects, 286 17.3 17.4 Allocation of Variation, 286 General 2^k Factorial Designs, 291 17.5 Exercise, 292 293 18 2^k r Factorial Designs with Replications 2²r Factorial Designs, 293 18.1 Computation of Effects, 294 18.2 Estimation of Experimental Errors, 294 18.3 Allocation of Variation, 295 18.4 Confidence Intervals for Effects, 298 18.5 Confidence Intervals for Predicted Responses, 299 18.6 Visual Tests for Verifying the Assumptions, 302 18.7 Multiplicative Models for 2^2r Experiments, 303 18.8 General $2^k r$ Factorial Design, 308 18.9 Exercise, 313 314 19 2^{k-p} Fractional Factorial Designs Preparing the Sign Table for a 2^{k-p} Design, 316 19.1 Confounding, 318 19.2 Algebra of Confounding, 320 19.3 Design Resolution, 321 19.4 Exercises, 326 327 20 One-Factor Experiments Model, 327 20.1Computation of Effects, 328 20.2 Estimating Experimental Errors, 330 20.3 Allocation of Variation, 331 20.4 Analysis of Variance, 332 20.5 Visual Diagnostic Tests, 334 20.6

- 20.7 Confidence Intervals for Effects, 335
- 20.8 Unequal Sample Sizes, 337 Exercise, 342

21	Two-	Factor Full Factorial Design without Replications	343
	21.1	Model, 344	
	21.2	Computation of Effects, 344	
	21.3	Estimating Experimental Errors, 346	
	21.4	Allocation of Variation, 347	
	21.5	Analysis of Variance, 348	
	21.6	Confidence Intervals for Effects, 351	
	21.7	Multiplicative Models for Two-Factor Experiments, 353	
	21.8	Missing Observations, 360	
		Exercises, 367	
22	Two-l	Factor Full Factorial Design with Replications	368
	22.1	Model, 368	
	22.2	Computation of Effects, 369	
	22.3	Computation of Errors, 372	
	22.4	Allocation of Variation, 372	
	22.5	Analysis of Variance, 374	
	22.6	Confidence Intervals for Effects, 374	
		Exercise, 379	
23	Gene	ral Full Factorial Designs with k Factors	381
	23.1	Model, 381	
	23.2	Analysis of a General Design, 382	
	23.3	Informal Methods, 386	
		Exercises, 389	
Fur	ther R	eading for Part IV	390
PAI	nt v	SIMULATION	391
24	Intro	duction to Simulation	393
	24.1	Common Mistakes in Simulation, 394	
	24.2	Other Causes of Simulation Analysis Failure, 395	
	24.3	Terminology, 398	
	24.4	Selecting a Language for Simulation, 401	
	24.5	Types of Simulations, 403	
	24.6	Event-Set Algorithms, 408	
		Exercises, 411	

25	Analys	sis of Simulation Results	413
	25.1	Model Verification Techniques, 413	
	25.2	Model Validation Techniques, 420	
	25.3	Transient Removal, 423	
	25.4	Terminating Simulations, 428	
	25.5	Stopping Criteria: Variance Estimation, 430	
	25.6	Variance Reduction, 436	
		Exercises, 436	
26	Rando	om-Number Generation	437
	26.1	Desired Properties of a Good Generator, 437	
	26.2	Linear-Congruential Generators, 439	
	26.3	Tausworthe Generators, 444	
	26.4	Extended Fibonacci Generators, 450	
	26.5	Combined Generators, 450	
	26.6	A Survey of Random-Number Generators, 452	
	26.7	Seed Selection, 453	
	26.8	Myths about Random-Number Generation, 455	
		Exercises, 458	
27	Testin	g Random-Number Generators	460
	27.1	Chi-Square Test, 461	
	27.2	Kolmogorov-Smirnov Test, 462	
	27.3	Serial-Correlation Test, 465	
	27.4	Two-Level Tests, 466	
	27.5	k-Dimensional Uniformity or k-Distributivity, 467	
	27.6	Serial Test, 468	
	27.7	Spectral Test, 470	
		Exercises, 473	
28	Rando	om-Variate Generation	474
	28.1	Inverse Transformation, 474	
	28.2	Rejection, 476	
	28.3	Composition, 478	
	28.4	Convolution, 479	

28.5 Characterization, 480 Exercise, 482

29 Commonly Used Distributions

	29.1	Bernoulli Distribution, 483	
	29.2	Beta Distribution, 484	
	29.3	Binomial Distribution, 485	
	29.4	Chi-Square Distribution, 486	
	29.5	Erlang Distribution, 487	
	29.6	Exponential Distribution, 488	
	29.7	F Distribution, 489	
	29.8	Gamma Distribution, 490	
	29.9	Geometric Distribution, 491	
	29.10	Lognormal Distribution, 492	
	29. 11	Negative Binomial Distribution, 492	
	29.12	Normal Distribution, 493	
	29.13	Pareto Distribution, 495	
	29.14	Pascal Distribution, 495	
	29.15	Poisson Distribution, 496	
	29.16	Student's t Distribution, 497	
	29.17	Uniform Distribution (Continuous), 497	
	29.18	Uniform Distribution (Discrete), 498	
	29.19	Weibull Distribution, 499	
	29.20	Relationships among Distributions, 499	
		Exercises, 501	
_			
Fur	ther Re	ading for Part V	502
		Current Areas of Research in Simulation, 503	
PAI	rt VI	QUEUEING MODELS	505
30	Introd	uction to Queueing Theory	507
	30.1	Queueing Notation, 507	
	30.2	Rules for All Queues, 510	

- 30.3 Little's Law, 513
- 30.4 Types of Stochastic Processes, 515 Exercises, 518

483

31	Analy	sis of a Single Queue	519
	31.131.231.331.431.5	Birth-Death Processes, 519 M/M/1 Queue, 522 M/M/m Queue, 527 M/M/m/B Queue with Finite Buffers, 534 Results for Other Queueing Systems, 540 Exercises, 545	
32	Queu	eing Networks	547
	32.1 32.2 32.3	Open and Closed Queueing Networks, 547 Product Form Networks, 548 Queueing Network Models of Computer Systems, 552 Exercise, 554	
33	Opera	ational Laws	555
	 33.1 33.2 33.3 33.4 33.5 33.6 	Utilization Law, 556 Forced Flow Law, 557 Little's Law, 560 General Response Time Law, 561 Interactive Response Time Law, 563 Bottleneck Analysis, 563 Exercises, 568	
34	Mean	-Value Analysis and Related Techniques	570
	34.1 34.2 34.3 34.4	Analysis of Open Queueing Networks, 570 Mean-Value Analysis, 575 Approximate MVA, 579 Balanced Job Bounds, 585 Exercises, 591	
35	Conv	olution Algorithm	593
	35.1 35.2 35.3 35.4	Distribution of Jobs in a System, 593 Convolution Algorithm for Computing $G(N)$, 595 Computing Performance Using $G(N)$, 598 Timesharing Systems, 602 Exercises, 607	

xxii

36	Hiera	rchical Decomposition of Large Queueing Networks	608
	36.1 36.2 36.3	Load-dependent Service Centers, 608 Hierarchical Decomposition, 613 Limitations of Queueing Theory, 620 Exercises, 622	
Fur	ther R	eading for Part VI	624
		Symbols Frequently Used in Queueing Analysis, 624	
Арј	pendix	A Statistical Tables	627
	A. 1	Area of the Unit Normal Distribution, 628	
	A.2	Quantiles of the Unit Normal Distribution, 629	
	A.3	Commonly Used Normal Quantiles, 630	
	A.4	Quantiles of the t Distribution, 631	
	A.5	Quantiles of the Chi-Square Distribution, 632	
	A.6	90-Percentiles of the $F(n,m)$ Distribution, 634	
	A.7	95-Percentiles of the $F(n,m)$ Distribution, 635	
	A.8	99-Percentiles of the $F(n,m)$ Distribution, 636	
	A.9	Quantiles of the K-S Distribution, 637	
	A.10	Approximation Formulas for Statistical Tables, 638	
Sol	lutions	to Selected Exercises	639
Ref	ference	es	651
Aut	Author Index		661
Su	Subject Index 66		