Signal Design for Good Correlation For Wireless Communication, Cryptography, and Radar

SOLOMON W. GOLOMB University of Southern California

GUANG GONG University of Waterloo, Ontario

Contents

ç

	Preface	<i>page</i> xi
	Acknowledgments	xiii
	Historical Introduction	xv
1	General Properties of Correlation	: † :
1.1	What is correlation?	1
1.2	Continuous correlation	2
1.3	Binary correlation	- 2
1.4	Complex correlation	- 3
1.5	Mutual orthogonality	3
1.6	The simplex bound on mutual negative correlation	4
1.7	Autocorrelation	6
1.8	Crosscorrelation	7
2	Applications of Correlation to the Communication	
	of Information	10
2.1	The maximum likelihood detector	10
2.2	Coherent versus incoherent detection	12
2.3	Orthogonal, biorthogonal, and simplex codes	14
2.4	Hadamard matrices and code construction	15
2.5	Cyclic Hadamard matrices	18
3	Finite Fields	22
3.1	Algebraic structures	22
3.2	Construction of $GF(p^n)$	31
3.3	The basic theory of finite fields	34
3.4	Minimal polynomials	41
3.5	Trace functions	52
3.6	Powers of trace functions	58
3.7	The numbers of irreducible polynomials and coset leaders	69

	Appendix A: A Maple program for step 3 in Algorithm 3.1	72
	Appendix B: Primitive polynomials	72
	Appendix C: Minimal polynomials	77
	Exercises for Chapter 3	79
4	Feedback Shift Register Sequences	81
4.1	Feedback shift registers	82
4.2	Definition of LFSR sequences in terms of polynomial rings	90
4.3	Minimal polynomials and periods	94
4.4	Decomposition of LFSR sequences	103
4.5	The matrix representation	106
4.6	Trace representation of LFSRs	108
4.7	Generating functions of LFSRs	112
	Exercises for Chapter 4	114
5	Randomness Measurements and <i>m</i> -Sequences	117
5.1	Golomb's randomness postulates and randomness criteria	117
5.2	Randomness properties of <i>m</i> -sequences	127
5.3	Interleaved structure of <i>m</i> -sequences	135
5.4	Trinomial property	145
5.5	Constant-on-cosets property	148
5.6	Two-tuple balance property	152
5.7	Classification of binary sequences of period $2^n - 1$	155
	Exercises for Chapter 5	159
6	Transforms of Sequences and Functions	162
6.1	The (discrete) Fourier transform	162
6.2	Trace representation	166
6.3	Linear spans and spectral sequences	174
6.4	One-to-one correspondence between sequences and functions	177
6.5	Hadamard transform and convolution transform	185
6.6	Correlation of functions	190
6.7	Laws of the Hadamard transform and convolution transform	193
6.8	The matrix representation of the DFT and the	
	Hadamard transform	197
	Exercises for Chapter 6	199
7	Cyclic Difference Sets and Binary Sequences with	
	Two-Level Autocorrelation	202
7.1	Cyclic difference sets and their relationship to binary sequences	
	with two-level autocorrelation	202
7.2	More results about C	207
7.3	Fourier spectral constraints	211
	Exercises for Chapter 7	218

8	Cyclic Hadamard Sequences, Part 1	219
8.1	Constructions with subfield decomposition	220
8.2	GMW constructions	234
8.3	Statistical properties of GMW sequences of all types	248
8.4	Linear spans of GMW sequences of all types	250
8.5	Shift-distinct sequences from GMW constructions	255
8.6	Implementation aspects of GMW constructions	257
	Exercises for Chapter 8	264
9	Cyclic Hadamard Sequences, Part 2	267
9.1	Multiple trace term sequences	267
9.2	Hyperoval constructions	282
9.3	Kasami power function construction	294
9.4	The iterative decimation Hadamard transform	303
	Appendix: Known 2-level autocorrelation sequences of periods	
	1023, 2047, and 4095 and their trace representations	318
•	Exercises for Chapter 9	321
10	Signal Sets with Low Crosscorrelation	323
10.1	Crosscorrelation, signal sets, and boolean functions	323
10.2	Odd case: Gold-pair signal sets and their generalization	336
10.3	Even case: Kasami (small) signal sets and their generalization	344
10.4	Even case: Bent function signal sets	353
10.5	Interleaved construction of signal sets	363
10.6	\mathbb{Z}_4 signal sets	371
	Exercises for Chapter 10	380
11	Correlation of Boolean Functions	382
11.1	Invariants, resiliency, and nonlinearity	383
11.2	Dual functions and resiliency	392
11.3	Dual functions, additive autocorrelation, and the	
	propagation property	395
	Exercises for Chapter 11	401
12	Applications to Radar, Sonar, Synchronization, and CDMA	402
12.1	Overview	402
12.2	Types of signals and correlations	403
12.3	Barker sequences	404
12.4	Generalized Barker sequences	405
12.5	Huffman's impulse-equivalent pulse trains	406
12.6	Pulse patterns and optimal rulers	408
12.7	Perfect circular rulers from cyclic projective planes	412
12.8	Two-dimensional pulse patterns	415
12.9	Periodic modulation	417

, ~

12.10 The application to CDMA wireless technology		419
•	Exercises for Chapter 12	421
	Bibliography	423
:	Index	433
-		

÷