Vadim I. Utkin

Sliding Modes in Control and Optimization

With 24 Figures

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona Budapest

Contents

Part I. Mathematical Tools	1
Chapter 1 Scope of the Theory of Sliding Modes	1
1 Shaping the Problem	1
2 Formalization of Sliding Mode Description	7
3 Sliding Modes in Control Systems	10
Chapter 2 Mathematical Description of Motions on Discontinuity	
Boundaries	12
1 Regularization Problem	12
2 Equivalent Control Method	14
3 Regularization of Systems Linear with Respect to Control	16
4 Physical Meaning of the Equivalent Control	22
5 Stochastic Regularization	25
Chapter 3 The Uniqueness Problems	29
1 Examples of Discontinuous Systems with	
Ambiguous Sliding Equations	29
1.1 Systems with Scalar Control	30
1.2 Systems Nonlinear with Respect to Vector-Valued Control	35
1.3 Example of Ambiguity in a System Linear with Respect to Control.	36
2 Minimal Convex Sets	38
3 Ambiguity in Systems Linear with Respect to Control	41
Chapter 4 Stability of Sliding Modes	44
1 Problem Statement, Definitions, Necessary Conditions for Stability .	44
2 An Analog of Lyapunov's Theorem to Determine	
the Sliding Mode Domain	46
3 Piecewise Smooth Lyapunov Functions	50
4 Quadratic Forms Method	55
5 Systems with a Vector-Valued Control Hierarchy	59
6 The Finiteness of Lyapunov Functions in	
Discontinuous Dynamic Systems	63

XIV Contents

	hapter 5 Singularly Perturbed Discontinuous Systems	66
	Separation of Motions in Singularly Perturbed Systems	66
	Problem Statement for Systems with Discontinuous control	68
3	Sliding Modes in Singularly Perturbed Discontinuous	
	Control Systems	70
P	art II. Design	75
C	hapter 6 Decoupling in Systems with Discontinuous Controls	76
1	Problem Statement	76
2	Invariant Transformations	78
3	Design Procedure	80
4	Reduction of the Control System Equations to a Regular Form	81
	1 Single-Input Systems	85
	2 Multiple-Input Systems	87
C	hapter 7 Eigenvalue Allocation	91
	Controllability of Stationary Linear Systems	91
	Canonical Controllability Form	94
	Eigenvalue Allocation in Linear Systems. Stabilizability	96
	Design of Discontinuity Surfaces	99
	Stability of Sliding Modes	104
	Estimation of Convergence to Sliding Manifold	108
C	hapter 8 Systems with Scalar Control	111
1	Design of Locally Stable Sliding Modes	111
2	Conditions of Sliding Mode Stability "in the Large"	115
	Design Procedure: An Example	121
	Systems in the Canonical Form	123
C	hapter 9 Dynamic Optimization	131
	Problem Statement	131
2	Observability, Detectability	132
	Optimal Control in Linear Systems with Quadratic Criterion	135
	Optimal Sliding Modes	137
	Parametric Optimization	139
	Optimization in Time-Varying Systems	
C	hapter 10 Control of Linear Plants in the Presence of Disturbances	145
	Problem Statement	145
2	Sliding Mode Invariance Conditions	146

Contents	XV
Contents	

3 Combined Systems	148
4 Invariant Systems Without Disturbance Measurements	149
5 Eigenvalue Allocation in Invariant System with	
Non-measurable Disturbances	151
Chapter 11 Systems with High Gains and Discontinuous Controls	155
1 Decoupled Motion Systems	155
2 Linear Time-Invariant Systems	157
3 Equivalent Control Method for the Study of	
Non-linear High-Gain Systems	159
4 Concluding Remarks	166
Chapter 12 Control of Distributed-Parameter Plants	169
1 Systems with Mobile Control	169
2 Design Based on the Lyapunov Method	180
3 Modal Control	184
4 Design of Distributed Control of Multi-Variable Heat Processes	186
Chapter 13 Control Under Uncertainty Conditions	189
1 Design of Adaptive Systems with Reference Model	189
2 Identification with Piecewise-Continuous Dynamic Models	194
3 Method of Self-Optimization	199
3 Wethod of Self Optimization	1))
Chapter 14 State Observation and Filtering	206
1 The Luenberger Observer	206
2 Observer with Discontinuous Parameters	207
3 Sliding Modes in Systems with Asymptotic Observers	210
4 Quasi-Optimal Adaptive Filtering	217
Chapter 15 Sliding Modes in Problems of Mathematical Programming.	222
1 Problem Statement	
2 Motion Equations and Necessary Existence Conditions	223
1	226
for Sliding Mode	
3 Gradient Procedures for Piecewise Smooth Function	221
4 Conditions for Penalty Function Existence.	220
Convergence of Gradient Procedure	
5 Design of Piecewise Smooth Penalty Function	
6 Linearly Independent Constraints	233
Part III. Applications	237
Chapter 16 Manipulator Control System	239
<u> </u>	

Contents

1 Model of Robot Arm		 		 . 240
2 Problem Statement		 		 . 240
3 Design of Control		 		 . 241
4 Design of Control System for a Two-joint Manipulate	or	 		 . 243
5 Manipulator Simulation		 		 . 246
6 Path Control				
7 Conclusions				
Chapter 17 Sliding Modes in Control of Electric Motor	S.	 		 . 250
1 Problem Statement				
2 Control of d.c. Motor				
3 Control of Induction Motor		 		 . 255
4 Control of Synchronous Motor	• •	 		 . 260
Chapter 18 Examples		 		 . 265
1 Electric Drives for Metal-cutting Machine Tools				
2 Vehicle Control				
3 Process Control				
4 Other Applications				
References		 		 . 278
Subject Index		 	٠.	 . 285
	-\$4 **			

•