H. A. Eiselt · C.-L. Sandblom

Linear Programming and its Applications

With 71 Figures and 36 Tables

CONTENTS

Symbols

A. Linear Algebra	1
A.1 Matrix Algebra	1
A.2 Systems of Simultaneous Linear Equations	5
A.3 Convexity	23
B. Computational Complexity	31
B.1 Algorithms and Time Complexity Functions	31
B.2 Examples of Time Complexity Functions	37
B.3 Classes of Problems and Their Relations	41
1. Introduction	45
1.1. A Short History of Linear Programming	45
1.2 Assumptions and the Main Components	
of Linear Programming Problems	48
1.3 The Modeling Process	53
1.4 The Three Phases in Optimization	57
1.5 Solving the Model and Interpreting the Printout	60
2. Applications	67
2.1 The Diet Problem	67
2.2 Allocation Problems	71
2.3 Cutting Stock Problems	75
2.4 Employee Scheduling	80
2.5 Data Envelopment Analysis	82
2.6 Inventory Planning	85
2.7 Blending Problems	89
2.8 Transportation Problems	91
2.9 Assignment Problems	102
2.10 A Production – Inventory Model: A Case Study	107

XIII

3. The Simplex Method	1	29
3.1 Graphical Concepts	1	29
3.1.1 The Graphical Solution Tech	hnique 1	29
3.1.2 Four Special Cases	1	38
3.2 Algebraic Concepts	1	43
3.2.1 The Algebraic Solution Tech	hnique 1	43
3.2.2 Four Special Cases Revisite	d 1	58
4. Duality	1	67
4.1 The Fundamental Theory of Duali	ty 1	67
4.2 Primal-Dual Relations	1	83
4.3 Interpretations of the Dual Probler	n 1	.98
5. Extensions of the Simplex Meth	hod 2	203
5.1 The Dual Simplex Method	2	:03
5.2 The Upper Bounding Technique	2	:12
5.3 Column Generation	2	:19
6. Postoptimality Analyses	2	25
6.1 Graphical Sensitivity Analysis	2	27
6.2 Changes of the Right-Hand Side V	/alues 2	:32
6.3 Changes of the Objective Function	n Coefficients 2	:40
6.4 Sensitivity Analyses in the Presen	ce of Degeneracy 2	:45
6.5 Addition of a Constraint	2	:48
6.6 Economic Analysis of an Optimal	Solution 2	252
7. Non-Simplex Based Solution M	lethods 2	261
7.1 Alternatives to the Simplex Metho	od 2	262
7.2 Interior Point Methods	2	273
8. Problem Reformulations	2	295
8.1 Reformulations of Variables	2	295
8.1.1 Lower Bounding Constraint	ts 2	295
8.1.2 Variables Unrestricted in Si	gn 2	:96
8.2 Reformulations of Constraints	2	:98
8.3. Reformulations of the Objective I	Function 3	601
8.3.1. Minimize the Weighted Su	m of Absolute Values 3	6 01
8.3.2 Bottleneck Problems	3	606
8.3.3 Minimax and Maximin Prol	blems 3	\$13
8.3.4 Fractional (Hyperbolic) Pro	gramming 3	\$20

9. Multiobiective Programming	325
9.1 Vector Optimization	327
9.2 Models with Exogenous Tradeoffs Between Objectives	337
9.2.1 The Weighting Method	337
9.2.2 The Constraint Method	339
9.3 Models with Exogenous Achievement Levels	341
9.3.1 Reference Point Programming	342
9.3.2 Fuzzy Programming	346
9.3.3 Goal Programming	351
9.4 Bilevel Programming	359
References	363
Subject Index	377