Der Entity-Relationship-Ansatz zum logischen Systementwurf

Datenbank- und Programmentwurf

von
Prof. Dr. Peter P. S. Chen
Louisiana State University,
Baton Rouge,
Louisiana
und
Prof. Dr. Heinz-Dieter Knöll
Fachhochschule Nordostniedersachsen,
Lüneburg

Inhaltsverzeichnis

Vorwort data da	13
I. Der Entity-Relationship-Ansatz zum logischen Datenbankent-	
wurf (Peter P. S. Chen)	
1. Einführung	15
1.1 Grundsätzliche Terminologie	15
1.2 Datenbankentwurf und physischer Datenbankentwurf	18
1.3 Datenbanksysteme und -modelle	20
1.4 Probleme beim logischen Datenbankentwurf	23
1.5 Ein anderer Ansatz zum Datenbankentwurf:	
Der Entity-Relationship-Ansatz	25
1.6 Vorteile des Entity-Relationship-Ansatzes	25
2. Entity-Relationship-Ansatz und ANSI/X3/SPARC Vor-	
schlag schlag statis and request where the restriction of the	27
2.1 ANSI/X3/SPARC Vorschlag	27
2.2 Konzeptuelles Schema und Unternehmensschema	29
2.3 Drei Typen von Datenbankadministratoren	31
2.4 Die Bedeutung des Entity-Relationship-Ansatzes	32
3. Das Entity-Relationship-(E/R)-Diagramm	35
3.1 Entitäten und Beziehungen	35
3.1.1 Entitätstyp	35
3.1.2 Beziehungstyp	35
3.2 Beschreibungen von Entitäten und Beziehungen	37
3.2.1 Attribute und Werte	37
3.2.2 Entitätsschlüssel	40
3.2.3 Beziehungsschlüssel	42
3.3 Spezielle Entitäts- und Beziehungstypen	42
3.3.1 Existenzabhängigkeit	42
3.3.2 Schlüsselabhängigkeit	44
4. Die Übersetzung von Entity-Relationship-Diagrammen	
in Datenstrukturdiagramme	47
4.1 Datenstrukturdiagramme	47
4.2 Übertragungsregeln	55

5.	Stufen des logischen Datenbankentwurfs und Beispiele	59
	5.1 Die Hauptschritte im logischen Datenbankentwurf	59
	5.2 Beispiel 1: Ein Industrie-Betrieb	59
	5.2.1 Identifizieren der Entitätstypen	59
	5.2.2 Identifizieren der Beziehungstypen	61
	5.2.3 Das Erstellen eines Entity-Relationship-Diagramms	
	mit Entitäten und Beziehungstypen	63
	5.2.4 Identifizieren von Wertetypen und Attributen	63
	5.2.5 Überführen des Entity-Relationship-Diagramms in	
	ein Datenstrukturdiagramm	67
	5.2.6 Der Entwurf des Datensatzformates	71
	5.3 Beispiel 2: Eine Datenbank für die Auftragsbearbei-	
	1.5 chin gader ar Ansatz zum Datenbarskentwurft gnut	77
	5.3.1 Identifizieren der Entitätstypen	77
	5.3.2 Identifizieren der Beziehungstypen	77
	5.3.3 Erstellen eines Entity-Relationship-Diagramms mit	
	Entitäten und Beziehungstypen	79
	5.3.4 Identifizieren der Wertetypen und Attribute	79
	5.3.5 Übertragen des Entity-Relationship-Diagramms in	
	ein Datenstruktur-Diagramm	83
	5.3.6 Entwerfen des Datensatzformates	83
	5.4 Beispiel 3: Eine Bibliotheksdatenbank in einem Unter-	
	nehmen	83
	5.4.1 Identifizieren der Entitätstypen	83
	5.4.2 Identifizieren der Beziehungstypen	85
	5.4.3 Erstellen eines Entity-Relationship-Diagramms	85
	5.4.4 Identifizieren der Attribute und Wertetypen	85
	5.4.5 Übertragen des Entity-Relationship-Diagramms in	
	ein Datenstrukturdiagramm	89
	5.4.6 Entwurf des Datensatzformates	93
6.	Weitere Überlegungen zum logischen Datenbankentwurf	95
	6.1 Weitere Übertragungsregeln von Entity-Relation-	
	ship-Diagrammen zu Datenstruktur-Diagrammen	95
	6.2 Verändern des Datenstruktur-Diagramms aus Durchsatz-	
	und Speichergründen	95

7. Entwurf von hierarchischen Datenbanken	101
7.1 Übertragungsregeln der alle bei der der aus der	101
7.2 Beispiel für das Entity-Relationship-Diagramm	105
8. Abschließende Bemerkungen	107
9. Literatur	109
II. Der Entity-Relationship-Ansatz zum logischen Programment- wurf (Heinz-Dieter Knöll)	
1. Einführung	111
1.1 Begriffsbestimmungen	112
1.2 Logischer und physischer Programmentwurf	115
1.3 Derzeitige Probleme beim Programmentwurf	116
1.4 Der Entity-Relationship-Ansatz zum logischen Program-	
mentwurf bnugati Haif	118
2. Das Entity-Relationship(E/R)-Diagramm	123
2.1 Vorgänge und Reziehungen	123
2.1.1 Vorgang	123
2.1.2 Beziehungstypen	123
2.2 Beschreibung der Vorgänge	125
est in 2.4 Cacheni des RS (Capril IIII beurzuß auf	4.00
3. Beschreibung der Funktionen	129
3.1 Überlegungen zur Klassifikation der Funktionen	129
3.2 Der Aufbau von Funktionsbäumen	136
3.2.1 Funktionsbäume von manuellen Vorgängen	136
3.2.2 Funktionsbäume von Vorgängen in Man Vorg	
Single-User-Systemen	138
3.2.3 Funktionsbäume von transaktionsorientierten	
Systemen bnEGA Hoz	140
3 2 4 Funktionshäume von Realtime-Systemen	144

4.	. Einige praktische Beispiele (1) mad zeld zu weite der 1900 aus auf der	145
	4.1 Die Hauptschritte im logischen Programmentwurf	145
	4.2 Beispiel: Auftragsbearbeitung	146
	4.2.1 Identifizieren der Vorgänge	146
	4.2.2 Identifizieren der Beziehungstypen	146
	4.2.3 Erstellen eines Entity-Relationship-Diagramms mit	
	Vorgängen und Beziehungstypen vom Ist-Zustand	148
	4.2.4 Identifizieren der in den Vorgängen enthaltenen	
	Funktionen und ihrer logischen Zusammenhänge	
	im Ist-Zustand eigel gegen kiege Anglidendische Register	148
	4.2.5 Erstellen eines Funktionsbaum-Diagramms vom	
	Ist-Zustand	154
	4.2.6 Zeichnen eines Entity-Relationship-Diagramms mit	
	Vorgängen und Beziehungstypen vom Soll-Zustand	154
	4.2.7 Identifizieren der enthaltenen Funktionen und ihrer	
	logischen Zusammenhänge im Soll-Zustand	154
	4.2.8 Erstellen eines Funktionsbaum-Diagramms vom	
	Soll-Zustand	164
	4.2.9 Optimierung der Anwendung	166
	4.3 Beispiel: Scheckverarbeitung	166
	4.3.1 Identifizieren der Vorgänge	166
	4.3.2 Identifizieren der Beziehungstypen	168
	4.3.3 Erstellen eines Entity-Relationship-Diagramms	
	mit Vorgängen und Beziehungstypen vom	
	Ist-Zustand	169
	4.3.4 Identifizieren der in den Vorgängen enthaltenen	
	Funktionen und ihrer logischen Zusammenhänge	
	im Ist-Zustand	169
	4.3.5 Erstellen eines Funktionsbaum-Diagramms vom	
	Ist-Zustand	172
	4.3.6 Zeichnen eines Entity-Relationship-Diagramms	
	mit Vorgängen und Beziehungstypen vom	
	Soll-Zustand	176
	4.3.7 Identifizieren der enthaltenen Funktionen und	
	ihrer logischen Zusammenhänge im Soll-Zustand	176
	4.3.8 Erstellen eines Funktionsbaum-Diagramms vom	
	Soll-Zustand	184

Inhaltsverzeichnis

4.4 Beispiel: Bibliothek	186
4.4.1 Identifizieren der Vorgänge	186
4.4.2 Identifizieren der Beziehungstypen	186
4.4.3 Erstellen eines Entity-Relationship-Diagramms mit	
Vorgängen und Beziehungstypen vom Ist-Zustand	188
4.4.4 Identifizieren der in den Vorgängen enthaltenen	
Funktionen und ihrer logischen Zusammenhänge	
im Ist-Zustand	188
4.4.5 Erstellen eines Funktionsbaum-Diagramms vom	
Ist-Zustand	189
4.4.6 Zeichnen eines Entity-Relationship-Diagramms	
mit Vorgängen und Beziehungstypen vom	
Soll-Zustand	189
4.4.7 Identifizieren der enthaltenen Funktionen und	
ihrer logischen Zusammenhänge im Soll-Zustand	189
4.4.8 Erstellen eines Funktionsbaum-Diagramms vom	
Soll-Zustand	191
5. Eine andere Darstellungsform zur verbesserten Benutzer-	
kommunikation	195
5.1 Die wesentlichen Schritte im logischen Systementwurf	195
5.2 Beispiel: Auftragsbearbeitung	195
5.2.1 Identifizieren von Vorgängen und den von ihnen	
benutzten Entitäten	195
5.2.2 Zeichnen des KS-Diagramms	196
5.2.3 Überführen der manuellen in maschinelle	
Vorgänge	196
5.2.4 Zeichnen des KS-Diagramms für den Soll-Zustand	196
5.2.5 Optimieren des Sollzustandes	196
6. Zusammenfassung	203
7. Literatur	205