D. L. Mills Nonlinear Optics

Basic Concepts

With 32 Figures

Springer-Verlag

Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest

Contents

1. Introductory Remarks	1
Problems	6
2. Linear Dielectric Response of Matter	7
2.1 Frequency Dependence of the Dielectric Tensor	11
2.2 Wave Vector Dependence of the Dielectric Tensor	27
2.3 Electromagnetic Waves in Anisotropic Dielectrics	30
Problems	33
3. Nonlinear Dielectric Response of Matter	37
3.1 Frequency Variation of the Nonlinear Susceptibilities	39
3.2 Wave Vector Dependence	
of the Nonlinear Susceptibilities	45
3.3 Remarks on the Order of Magnitude	
of the Nonlinear Susceptibilities	47
Problems	49
4. Basic Principles of Nonlinear Wave Interactions:	
Second Harmonic Generation and Four Wave Mixing	51
4.1 Perturbation Theoretic Analysis	
of Second Harmonic Generation	51
4.2 Methods of Achieving the Phase Matching Condition	57
4.3 Evolution of the Second Harmonic Wave	
under Phase Matched Conditions	59
4.4 Other Examples of Nonlinear Wave Interactions	63
4.4.1 Four Wave Mixing Spectroscopy	63
4.4.2 Optical Phase Conjugation	69
Problems	71
5. Inelastic Scattering of Light from Matter:	
Stimulated Raman and Brillouin Scattering	73
5.1 Quantum Theory of Raman Scattering	77
5.2 Stimulated Raman Effect	82
5.3 Contribution to Four Wave Mixing	
from the Raman Nonlinearity	84

7

5.4 Brillouin Scattering of Light	87
Problems	91
6. Interaction of Atoms with Nearly Resonant Fields:	
Self-Induced Transparency	93
6.1 Description of the Wave Function	
under Near Resonant Conditions	94
6.2 Bloch Equations: Power Broadening	
and Saturation Effects in Absorption Spectra	101
6.3 Self-Induced Transparency	107
6.4 Area Theorem	112
6.5 Sine-Gordon Equation	114
Problems	11/
7. Self-Interaction Effects in One-Dimensional	
Wave Propagation: Solitons in Optical Fibers	
and in Periodic Structures	119
7.1 Normal Modes of Optical Fibers	121
7.2 Nonlinear Schrödinger Equation	128
7.3 Linear Theory of Pulse Propagation	
in a Dispersive Medium: Application to Optical Fibers	132
7.4 Solitons and the Nonlinear Schrödinger Equation	135
7.5 Gap Solitons in Nonlinear Periodic Structures	139
Problems	153
8. Chaos	155
8.1 Duffing Accillator: Transition to Chaos	156
8.7 Boutes to Chaos	161
8.3 Experimental Observations of Chaos in Ontical Systems	162
Problems	162
Appendix A: Structure of the Wave Vector	
and Frequency Dependent Dielectric Tensor	167
Appendix B: Aspects of the Sine-Gordon Equation	175
References	179
Subject Index	183