Koenraad Van Schuylenbergh • Robert Puers

Inductive Powering

Basic Theory and Application to Biomedical Systems

PREFACE	v
SYMBOLS AND UNITS	vii
CHAPTER 1: AN INTRODUCTION ON TELEMETRY	1
1.1 WIRELESS CONNECTIONS	2
1.1.1 Modulation	
1.1.1.1 Continuous wave carrier modulation	
1.1.1.2 Analogue pulse modulation	
1.1.1.3 Digital pulse-code modulation	9
1.1.2 Propagating-wave links	11
1.1.2.1 Radio-frequency links	11
1.1.2.2 Optical links	
1.1.2.3 Ultrasound links	
1.1.3 Conduction links	
1.1.4 Quasi-stationary or induction field links	
1.1.4.1 Capacitive links	
1.1.4.2 Magnetic links	
1.2 HOW TO CHOOSE BETWEEN LINK TYPES?	
1.2.1 Transducer dimensions	
1.2.2 Influence of the link on its environment	
1.2.2.1 R.f. electromagnetic fields	
1.2.2.2 Electric currents through the body	

xiv - TABLE OF CONTENTS

1.2.2.3 Optical effects	. 27
1.2.2.4 Ultrasound effects	. 28
1.2.3 Influence of the environment on the link performance	. 28
1.2.3.1 Influence on electromagnetic links	
1.2.3.2 Influence on optical links	
1.2.3.3 Influence on ultrasound links	33
1.3 CONCLUSIONS	
1.4 REFERENCES	. 33
CHAPTER 2: THE CONCEPTS OF INDUCTIVE POWERING	41
2.1 INDUCTION THEORY	. 42
2.1.1 Magnetic fields	
2.1.2 Mutually coupled coils	. 44
2.1.3 Equivalent network models	
2.2 INDUCTIVE POWERING	
2.2 ROBOCTIVE FOWERING	
2.2.1 Fower transfer	
2.3 THE DRIVEN INDUCTIVE LINK	
2.3.1 Rectifiers	
2.3.1.1 Half-wave rectification	. 53
2.3.1.2 Full-wave rectification with voltage doubling	. 54
2.3.1.3 Full-wave rectification without voltage doubling	. 56
2.3.1.4 Class-E rectifiers	56
2.3.2 Secondary coil and capacitor tapping	
2.3.3 Regulators	
2.3.3.1 Linear regulators	
2.3.3.2 Switch-mode regulators	
2.3.4 Primary coil driver	. 64
2.4 LINK OPTIMISATION	. 67
2.4.1 Efficiency optimisation.	
2.4.2 Desensitising the link gain to coupling variations, by critical coil coupling	68
2.4.3 Link stabilisation through stagger tuning	
2.4.4 Link stabilisation through self-oscillation	
2.5 DISCUSSION: OPTIMISATION OF WEAKLY COUPLED LINKS	
2.5.1 Optimisation of the driven inductive link	
2.5.1 Optimisation of the driver inductive link	
2.5.2 On-the adjustment of the driver output power	73
2.6 CONCLUSIONS	. 74
2.7 REFERENCES	. 74
CHAPTER 3: EXACT LINK FORMULAE	77
	-
3.1 INDUCTIVE LINKS WITH A PARALLEL-RESONANT SECONDARY	
3.1.1 Equivalent secondary impedance	
3.1.2 Link efficiencies	
3.1.2.1 Primary link efficiency	
3.1.2.2 Secondary link efficiency	
3.1.2.3 Total link efficiency	
3.1.3 Link gain	82
3.1.3.1 Non-resonant primary coil	83
3.1.3.2 Series-resonant primary coil	84
3.1.3.3 Parallel-resonant primary coil	84

 3.1.4 Link optimisation
 85

 3.1.4.1 Solution at maximal link efficiency
 85

 3.1.4.2 Solution at critical coupling
 87

 3.2 INDUCTIVE LINKS WITH A SERIES-RESONANT SECONDARY
 92

 3.1.4 Equivalent secondary impedance
 93

 3.2.2 Link efficiencies
 94

 3.2.2.1 Primary link efficiency
 94

 3.2.2.2 Secondary link efficiency
 94

103

3.2.2.3	Total link efficiency	
3.2.3 L	ink gain	
3.2.3.1	Non-resonant primary coil	
3.2.3.2	Series-resonant primary coil	95
3.2.3.3	Parallel-resonant primary coil	95
3.2.4 L	ink optimisation	
3.2.4.1	Solution at maximal link efficiency	96
3.2.4.2	Solution at critical coupling	
3.3 CO	NCLUSIONS	100
3.4 RE	FERENCES	101

CHAPTER 4: PRIMARY COIL DRIVERS

4.1	CLASS C	106
4.2	MODELLING OF SWITCH TRANSISTORS	110
4.3	CLASS D	112
4.4	THE IMPORTANCE OF SUPPLY DECOUPLING	117
4.5	IDEAL ACTIVE-DEVICE BEHAVIOUR	118
4.6	SATURATING CLASS C	120
4.7	CLASS E	127
4.8	CLASS E WITH 1 COIL AND 1 CAPACITOR	136
4.9	DRIVING WEAKLY COUPLED LINKS	137
	CONCLUSIONS	
4.11	REFERENCES	141

CHAPTER 5: OPTIMISATION OF THE DRIVEN INDUCTIVE LINK 145

5.1 OPTIMISATION OF THE DRIVEN LINK	146
5.1.1 Relation between k and η	146
5.1.2 Relation between $Q_{l_{s_i}}$ and η	147
5.1.3 Relation between $Q_{L_{s_2}}$ and η	147
5.1.4 Relation between ω and η	
5.1.5 Relation between D and η	148
5.1.6 Relation between the coil inductances and η	148
5.1.7 Relation between α and η	
5.1.8 Critical coupling of the driven inductive link	151
5.2 THE OPTIMISATION STRATEGY	152
5.2.1 Magnetic design	
5.2.1.1 Simple coils in a passive medium	155
5.2.1.2 Coils nearby electric materials	158
5.2.2 Electronic design	159
5.3 DESIGN EXAMPLE	162
5.3.1 Magnetic link design	162
5.3.2 Electronic link design	163
5.3.2.1 The saturating-class-C driver	163
5.3.2.2 The class-E driver	164
5.4 CONCLUSIONS	166
5.5 REFERENCES	167
CHAPTER 6: AUTOMATIC LINK TUNING	169
6.1 AUTOMATIC SEARCH OF THE TRANSFER FREQUENCY	
AND AUTO-REGULATION OF THE DRIVER POWER	170
6.2 SWITCH-MODE COIL DRIVER WITH LOAD-RESONANCE CONT	ROL 173
6.3 PROTOTYPE RESULTS AND DISCUSSION	175
64 REFERENCES	177

APPENDIX A1: VECTOR FORMULAE	179
APPENDIX A2: COIL MODELS AND MEASUREMENTS	181
A2.1 COIL MODELS	182
A2.1.1 Series L-R-C model	183
A2.1.1.1 The model inductor	
A2.1.1.2 The model resistor	
A2.1.1.3 The model capacitor	186
A2.1.2 Parallel L-R-C model	187
A2.2 COIL MEASUREMENTS	
A2.2.1 Coil inductance A2.2.2 Coil quality factor	
A2.2.2 Coll guardy factor	
A2.2.4 Coil coupling	
A2.3 REFERENCES	
APPENDIX A3: SATURATING-CLASS-C AMPLIFIERS	195
A3.1 THE STEADY-STATE SWITCH VOLTAGE AND COIL CURRENT	196
A3.1.1 Switch ON	
A3.1.2 Switch OFF	
A3.1.2.1 The coil current $i_{L_{OFF}}$	197
A3.1.2.2 The switch voltage $v_{S_{OFF}}$	
A3.1.3 Steady-state circuit behaviour	199
A3.2 NORMALISED EXPRESSIONS	200
A3.2.1 Switch ON $(0 \le y \le 2\pi D)$	200
A3.2.2 Switch OFF $(2\pi D \le y \le 2\pi)$	200
A3.2.3 Steady-state conditions	
A3.3 SATURATING-CLASS-C OPERATION	
A3.4 CLASS-E REQUIREMENTS	
A3.5 THE NUMERICAL W COMPUTATION	205
A3.6 DRIVER EFFICIENCY η_{driver}	206
A3.7 HIGH Q _{tank} EXPRESSIONS	211
A3.7.1 Switch ON	
A3.7.2 Switch OFF	
A3.7.2.1 The coil current $i_{L_{OFF}}$	
A3.7.2.2 The switch voltage $v_{S_{OFF}}$	
A3.7.3 Steady-state circuit behaviour	
A3.7.4 Saturating-class-C operation	
A3.7.5 Driver output power and efficiency	
A3.7.6 First harmonic component	
A3.8 REFERENCES	217

INDEX

219