Luca Sterpone

Electronics System Design Techniques for Safety Critical Applications

CONTENTS

Contributing Author	xi
-	
Preface	xiii

PART I

Chapter 1: An Introduction to FPGA Devices in Radiation Environments	3
From the architecture to the model	
1. Previously Developed Hardening Techniques	
1.1 Reconfigurable-Based Techniques	
1.2 Redundancy-Based Techniques	
2. Preliminaries of SRAM-Based FPGAS Architecture	
2.1 Generic SRAM-Based FPGA Model	
2.2 FPGA Routing Graph	13
Chapter 2: Radiation Effects on SRAM-Based FPGAS	17
Modeling and simulation of radiations effects	
1. Radiation Effects	18
1.1 Single Event Upset (SEU)	19
1.2 Single Event Latch-Up (SEL)	20
2. SEU Effects on FPGA's Configuration Memory	21
3. Simulation-Based Analysis of SEUs	
3.1 Simulation Environment	23
3.2 Fault Simulation Tool	26
3.3 Experimental Results	28
4. Hardware-Based Analysis of SEUs	30
4.1 Details on the Xilinx Triple Modular Redundancy	
4.2 Analysis of TMR Architecture	
4.3 Experimental Results	
5. Robustness of the TMR Architecture	
5.1 Analysis of the Fault Effects	39
6. Constraints for Achieving Fault Tolerance	

Chapter 3: Analytical Algorithms for Faulty Effects Analysis Single and multiple upsets errors	47
1. Overview on Static Analysis Algorithm	49
2. Analytical Dependable Rules	51
3. The Star Algorithm for SEU Analysis	52
3.1 The Dynamic Evaluation Platform	
3.2 Experimental Results of SEU Static Analysis	55
4. The Star Algorithm for MCU Analysis	56
4.1 Analysis of Errors Produced by MCUs	58
4.2 Experimental Results of MCU Static Analysis	67
Chapter 4: Reliability-Oriented Place and Route Algorithm Dependable design on SRAM-based FPGAs	71
1. RoRA Placement Algorithm	73
2. RoRA Routing Algorithm	
3. Experimental Analysis	
Chapter 5: A Novel Design Flow for Fault Tolerance	
SRAM-Based FPGA Systems	85
Integrated synthesis design flow and performance optimization	
1. The Design Flow	87
1.1 STAR Analyzer	88
1.2 RoRA Router	
2. Performance Optimization of Fault Tolerant Circuits	89
2.1 The Congestion Graph	90
2.2 The Voter Architectures and Arithmetic Modules	
2.3 The V-Place Algorithm	92
3. Experimental Results	93
3.1 Timing Analysis	94
3.2 Evaluating the Proposed Design Flow	96
3.3 Evaluating a Realistic Circuit	97
PARTII	

Chapter 6: Configuration System Based on Internal FPGA	
Decompression	
A new configuration architecture	
1. Introduction to the Decompression Systems	
2. Overview on the Previously Developed	
Decompression Systems	
2.1 Generalities of SRAM-Based FPGAs	

3. The Proposed System	108
4. Experimental Results	. 111
4.1 Compression System Results	112
Chapter 7: Reconfigurable Devices for the Analysis of DNA	
Microarray	117
A complete gene expression profiling platform	
1. Introduction to the DNA Microarray	117
2. Overview on the Previously Developed	
Analysis Techniques	
3. Preliminaries of DNA Microarray Image Analysis	
3.1 The Edge Detection Algorithm	122
4. The Proposed DNA Microarray Analysis Architecture	123
4.1 The Edge Detection Architecture	125
4.2 The Quality Assessment Core	128
5. Experimental Results	
Chapter 8: Reconfigurable Compute Fabric Architectures A new design paradigm	. 133
1. Introduction to RCF Devices	134
2. The ReCoM Architecture	135
3. Experimental Results	. 141
Index	. 143