Kjell Jørgen Hole

Anti-fragile ICT Systems

Contents

Par	t I	The Concept of Anti-fragility	
1	Int	roduction	3
	1.1		4
	1.2	Fragile, Robust, and Anti-fragile Systems	7
	1.3		7
	1.4	Creating and Maintaining Anti-fragility	8
	1.5	Anti-fragility to Downtime	9
	1.6	Anti-fragility to Malware Spreading	9
	1.7		0
	1.8		1
2	Acl	nieving Anti-fragility	3
	2.1		3
	2.2	Examples of Swans	5
	2.3	Limiting the Impact of Failures	6
	2.4	Learning from Small Failures	7
	2.5		8
	2.6	Risk Analyses Ignore Swans	9
	2.7	Understanding and Reducing Risk	0
	2.8	Taleb's Four Quadrants	1
	2.9	Discussion and Summary	2
3	The	e Need to Build Trust	5
	3.1	Defining Trust	5
	3.2	Explanatory Trust Model	7
	3.3	Model Limitations	9
	3.4	Trust Is Fragile	9
	2.5		1

xiv Contents

	3.6	Maintaining Trust	32
		3.6.1 Prepare Alternative Services	32
		3.6.2 Make Digital Services Voluntary	33
		3.6.3 Build a Good Track Record	33
	3.7	Discussion and Summary	34
4	Prin	ciples Ensuring Anti-fragility	35
•	4.1	Modularity	35
	4.2	Weak Links.	37
	4.3	Redundancy.	37
	4.4	Diversity	38
	4.5	•	39
		Fail Fast	39
	4.6	Systemic Failure Without Failed Modules	
	4.7	The Need for Models	41
	4.8	Discussion	42
Par	rt II	Anti-fragility to Downtime	
5		-fragile Cloud Solutions	47
3	5.1	Choice of System Realization	47
	5.2		49
		Modularity via Microservices	
	5.3	Weak Links via Circuit Breakers	49
	5.4	Redundancy Provided by the Cloud	50
	5.5	Diversity Enabled by the Cloud	52
	5.6	Fail Fast Using Software Tools	54
	5.7	Top-Down Design and Bottom-Up Tinkering	55
	5.8	Discussion and Summary	55
6	Tow	ard an Anti-fragile e-Government System	57
	6.1	The Norwegian e-Government System	57
	6.2	Redesign Needed	59
	6.3	Better Testing	59
	6.4	Availability Requirements	60
	6.5	Fine-Grained SOA in a Public Cloud	60
	6.6	User-Focused and Iterative Development	61
	6.7	Single Versus Multiple Systems	62
		6.7.1 Systems with Strongly Connected Modules	62
		6.7.2 Cloud-Based Systems of Weakly Connected	
		Modules	63
	6.8	Discussion and Summary	64
7	Anti	-fragile Cloud-Based Telecom Systems	67
•	7.1	Anti-principles Causing Fragility to Downtime	68
	7.2	Past Fragility to Downtime	68
	7.3	Indicators of Fragility to Future Downtime	70
	7.3 7.4	Robust Access Networks	73

Contents xv

	7.5	Robust Network Core	75
	7.6	Reduced Dependency on the Power Grid	75
	7.7	Reduced Dependency on One Infrastructure	76
	7.8	Anti-fragility to Downtime	76
	7.9	Discussion and Summary	77
Par	t III	Anti-fragility to Malware	
8	Robu	stness to Malware Spreading	81
	8.1	Introduction	81
	8.2	Explanatory Epidemiological Model	82
		8.2.1 Epidemiological Model	82
		8.2.2 Non-predictive Model	83
	8.3	Malware-Halting Technique	84
	8.4	Halting Technique Analysis	85
	8.5	Halting Technique Performance	87
		8.5.1 Sparse and Homogeneous Networks	87
		8.5.2 Dense and Homogeneous Networks	89
	8.6	Persistent Targeted Attacks	89
	8.7	Related Work	90
	8.8	Summary	92
9	Robu	stness to Malware Reinfections	93
	9.1	Malware Attack on a Norwegian Bank	93
	9.2	Stochastic Epidemiological Model	94
	9.3	How to Immunize Unknown Hubs	95
	9.4	Lower Bound on Required Diversity	96
	9.5	Discussion and Summary	97
10	Anti-	fragility to Malware Spreading	99
	10.1	System Model	100
		10.1.1 Model Description	101
		10.1.2 Model Limitations	102
	10.2	Anti-fragility on Static Graphs	103
		10.2.1 Simulations of Anti-fragility on Static Networks	104
		10.2.2 Anti-fragility on Large Static Networks	105
	10.3	Anti-fragility on Time-Varying Graphs	105
		10.3.1 Simulations of Anti-fragility	106
	10.4	Discussion	109
Par	t IV	Anomaly Detection	
11	The I	HTM Learning Algorithm	113
	11.1	The Problem with Classical AI Research	114
	11.2	An Alternative Approach to Learning	114

xvi Contents

	11.3	The Brain's Neocortex	115
	11.5	11.3.1 Communication	116
		11.3.2 Memory	117
		11.3.3 Predictions	117
	11.4		118
	11.4	Overview of HTM	
		11.4.1 Sparse Distributed Representation	118
		11.4.2 Proximal Dendrite Segments	119
		11.4.3 Distal Dendrite Segments	120
	11.5	The Three Steps of HTM	121
		11.5.1 Make an SDR of the Input	121
		11.5.2 Represent the Input in Context of Previous Inputs	122
		11.5.3 Make Prediction from Current and Previous Inputs	123
	11.6	Discussion and Summary	124
12	Anom	aly Detection with HTM	125
	12.1	Anomalies	125
	12.2	HTM Anomaly Score	126
	12.3	HTM Anomaly Probabilities	127
	12.4	Grok the Cloud	127
	12.5	Rogue Behavior	129
	12.6	Detecting the Beginning of Swans	130
	12.7	Discussion and Summary	131
	12.7	Discussion and Summary	131
Part	V F	uture Anti-fragile Systems	
13	Sumn	nary and Future Work	135
	13.1	Achieving Anti-fragility	135
	13.2	Future Anti-fragile ICT Systems	137
	13.3	Future Bio-inspired System Designs	138
	13.4	The Need for Anti-fragile Processes	139
	13.5	Challenge to Readers	140
D.e.		-	141
Kele	erences	•	141
Inde	ex		147