Active Noise Control

M. O. TOKHI

The University of Sheffield, Department of Automatic Control and Systems Engineering, Sheffield, UK

R. R. LEITCH

Heriot–Watt University, Department of Electrical and Electronic Engineering, Edinburgh, UK

CLARENDON PRESS • **OXFORD**

CONTENTS

1	Intro	oduction	. 1		
2	Development of active noise control systems				
	2.1	Introduction	7		
	2.2	Historical review	8		
	2.3	Approaches to design	20		
	2.4	Summary	25		
	2.5	References	26		
3	The process of field cancellation				
	3.1	Introduction			
	3.2	The field cancellation factor	41		
	3.3	General conditions for cancellation	45		
	3.4	Three-dimensional description of cancellation	48		
		3.4.1 Power ratio and cross-spectral density factor	48		
		3.4.2 Cancellation as a function of power ratio	52		
		3.4.3 Cancellation as a function of distance difference	55		
		3.4.4 Cancellation as a function of frequency	62		
		3.4.5 Zones of cancellation and reinforcement	63		
	3.5	Summary	68		
	3.6	References	69		
4	Con	troller design	70		
	4.1	Introduction	70		
	4.2	Active noise control structures	71		
		4.2.1 Feedback control structure	71		
		4.2.2 Feedforward control structure	74		
	4.3	Geometry-related constraints	77		
		4.3.1 Locus of an infinite-gain controller	77		
		4.3.2 Feedback control structure	86		
	4.4	Summary	87		
	4.5	References	88		
5	System stability				
	5.1 Introduction				
	5.2	5.2 The feedback loop			
	5.3 The stability criterion				
		5.3.1 Gain and phase margins	93		

CONTENTS

	5 A	Creation conditions	94		
	5.4	Spatial conditions 5.4.1 Gain margin	94 96		
		5.4.2 Phase margin	103		
	5.5	Summary	105		
	5.5 5.6	References	100		
	5.0	References	107		
6	Des	Design of an ANC system with a fixed controller			
	6.1	1 Introduction			
	6.2	The controller transfer function	109		
		6.2.1 Frequency-response measurement	111		
		6.2.2 Realization in the continuous-time domain	114		
		6.2.3 Realization in the discrete-time domain	115		
		6.2.4 Digital implementation	117		
	6.3	Investigation of system performance	118		
		6.3.1 Synthetic source of noise	119		
		6.3.2 Practical source of noise	121		
	6.4	Summary	122		
	6.5	References	123		
7	Ada	Adaptive control			
	7.1	Introduction	124		
	7.2	An overview of adaptive control systems	125		
		7.2.1 Self-tuning control	129		
	7.3	System identification	133		
		7.3.1 The process model	134		
		7.3.2 Linear least squares identification	137		
		7.3.3 Recursive least squares identification	143		
		7.3.4 Starting recursive least squares estimation	146		
		7.3.5 Time-varying parameters	147		
		7.3.6 Factors influencing the identification	150		
		7.3.7 Real-time implementation	152		
	7.4	Summary	154		
	7.5	References	155		
8	Self-	tuning active noise control	158		
Ũ	8.1	-			
	8.2	The process model	158 159		
	0.2	8.2.1 Secondary source off	160		
		8.2.2 Secondary source on	160		
	8.3	Controller design	163		
	8.4	Controller identification	164		
	0.1	8.4.1 Controller design calculation	165		
		8.4.2 Controller design algorithm	167		
		8.4.3 Controller implementation	170		
	8.5	Design of the self-tuning control algorithm	171		
	ð.3	Design of the sen-tuning control algorithm	1/1		

х

CC)N	TI	EΝ	ITS
----	----	----	----	-----

	8.6	Imp	lementation of the self-tuning control algorithm	173
		8.6.1	Input signal conditioning	174
		8.6.2	Robustness of the algorithm	175
		8.6.3	Tuning parameters	176
		8.6.4	Data quantization	176
		8.6.5	Processor word length and data format	177
		8.6.6	-	177
	8.7	Inve	stigation of system performance	179
	8.8	Sum	mary	181
	8.9	Refe	rences	182
9	Pros	pects	for active noise control	183
Ap	pendi	κA	The locus of the constant distance ratio	189
Ap	pendi	ĸВ	The locus of the constant distance difference	196
Ap	pendi	x C	The locus of constant distance ratio – constant distance difference	199
Inc	lex			202

xi