Quantum Noise

A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics

Second Enlarged Edition With 57 Figures

Professor Crispin W. Gardiner

School of Chemical and Physical Sciences Victoria University Wellington, New Zealand

Professor Peter Zoller

Institute for Theoretical Physics University of Innsbruck Technikerstrasse 25, 6020 Innsbruck, Austria

The first edition appeared as Springer Series in Synergetics, Volume 56 under the title: C.W. Gardiner, *Quantum Noise*

Library of Congress Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek – CIP Einheitsaufnahme Gardiner, Crispin W: Quantum noise : a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics / C.W. Gardiner : P. Zoller, – 2. enl. ed. – Berlin; Heidelberg; New York; Barcelona: Hong Kong; London: Milan, Paris; Singapore; Tokyo: Springer. 2000 (Springer series in synergetics : Vol. 56) ISBN 3-540-66571-4

ISSN 0172-7389

ISBN 3-540-66571-4 2nd Edition Springer-Verlag Berlin Heidelberg New York

ISBN 3-540-53608-6 1st Edition Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1991, 2000 Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting by the authors Cover design: design & production, Heidelberg Printed on acid-free paper SPIN: 10744517 55/3144/ba - 5 4 3 2 1 0

Contents

1.	ΑH	istorica	Il Introduction	1
	1.1	Heiser	aberg's Uncertainty Principle	1
		1.1.1	The Equation of Motion and Repeated Measurements	3
	1.2	The Sp	pectrum of Quantum Noise	4
	1.3	Emiss	ion and Absorption of Light	7
	1.4	Consis	stency Requirements for Quantum Noise Theory	10
		1.4.1	Consistency with Statistical Mechanics	10
		1.4.2	Consistency with Quantum Mechanics	11
	1.5	Quant	um Stochastic Processes and the Master Equation	13
		1.5.1	The Two Level Atom in a Thermal Radiation Field	14
		1.5.2	Relationship to the Pauli Master Equation	18
2.	Qua	ntum S	statistics	21
	2.1	The D	ensity Operator	21
		2.1.1	Density Operator Properties	22
		2.1.2	Von Neumann's Equation	24
	2.2	Quant	um Theory of Measurement	24
		2.2.1	Precise Measurements	24
		2.2.2	Imprecise Measurements	25
		2.2.3	The Quantum Bayes Theorem	27
		2.2.4	More General Kinds of Measurements	29
		2.2.5	Measurements and the Density Operator	31
	2.3	Multit	ime Measurements	33
		2.3.1	Sequences of Measurements	33
		2.3.2	Expression as a Correlation Function	34
		2.3.3	General Correlation Functions	34
	2.4	Quant	um Statistical Mechanics	35
		2.4.1	Entropy	35
		2.4.2	Thermodynamic Equilibrium	36
		2.4.3	The Bose Einstein Distribution	38
	2.5	Syster	n and Heat Bath	- 39
		2.5.1	Density Operators for "System" and "Heat Bath"	40
		2.5.2	Mutual Influence of "System" and "Bath"	41
3.	Qua	ntum I	_angevin Equations	42
	3.1	The H	armonic Oscillator Heat Bath	44
		3.1.1	Derivation of the Langevin Equation	46
		3.1.2	Commutation Relations for Noise Sources	49

	3.2	The Fi	ield Interpretation—Noise Inputs and Outputs	51
		3.2.1	Input and Output Fields	52
		3.2.2	Equations of Motion for System Operators	54
	3.3	The N	oise Interpretation	57
		3.3.1	Thermal Statistics	58
		3.3.2	The Classical Limit	59
		3.3.3	Behaviour of the Langevin Correlation Function	
			as a Function of Time	. 59
		3.3.4	Other Noise Statistics	61
	3.4	Exam	ples and Applications	61
		3.4.1	A Particle Moving in a Potential	61
		3.4.2	The Brownian Particle Langevin Equation	62
		3.4.3	The Harmonic Oscillator	65
		3.4.4	The Two Level Atom	68
		3.4.5	The Rotating Wave Approximation	69
	3.5	The A	djoint Equation	71
		3.5.1	Derivation of the Adjoint Equation	71
		3.5.2	Comments on the Adjoint Equation	74
		3.5.3	Summary of the Adjoint Equation	75
	3.6	The M	laster Equation	76
		3.6.1	The Quantum Brownian Motion Master Equation	80
		3.6.2	Quantum Brownian Motion of a Particle in a Potential	81
		3.6.3	The Quantum Optical Case	85
4.	Pha	se Spac	e Methods	90
	4.1	The H	armonic Oscillator in One Variable	91
		4.1.1	Equations of Motion—Classical	91
		4.1.2	Equations of Motion—Quantum	92
		4.1.3	The Schrödinger Picture: Energy Eigenvalues	
			and Number States	. 93
		4.1.4	The Heisenberg Picture	95
	4.2	Coher	ent States and the Classical Limit	96
		4.2.1	Coherent States as Quasi-Classical States	97
		4.2.2	Coherent State Solution for the Harmonic Oscillator	98
	4.3	Coher		99
		4.3.1	Properties of the Coherent States	99
		4.3.2	Coherent States are Driven Oscillator Wavefunctions	104
	4.4	Phase	Space Representations	
		of the	Harmonic Oscillator Density Operator	106
		4.4.1	The Q-Representation	106
		4.4.2	The Quantum Characteristic Function	111
		4.4.3	The Winner Equation	112
		4.4.4	I ne wigner Function	115
	4 5	4.4.5	Gaussian Density Operators	118
	4.5	Opera	Auditation to the Driver Here in Onition	122
		/I 5 I	Application to the Driven Harmonic Decillator	- 124

		4.5.2	The Wigner Function	
			and the Quasiclassical Langevin Equation	. 126
		Appe	ndix 4A. The Baker-Hausdorff Formula	128
			4A.1 Corollaries	129
5.	Qua	antum N	Markov Processes	130
	5.1	The Pl	hysical Basis of the Master Equation	131
		5.1.1	Derivation of the Quantum Optical Master Equation	131
		5.1.2	A Derivation Based on Projection Operators	135
		5.1.3	Relationship to the Quantum Optical Master Equation	137
		5.1.4	Quantum Optical Master Equation with Arbitrary Bath	139
		5.1.5	Relationship to the Quantum Brownian	
			Motion Master Equation	. 141
		5.1.6	Notational Matters	141
	5.2	Multit	ime Structure of Quantum Markov Processes	143
		5.2.1	Computation of Multitime Averages	143
		5.2.2	The Markov Interpretation	146
		5.2.3	Quantum Regression Theorem	147
	5.3	Inputs.	, Outputs and Quantum Stochastic Differential Equations	148
		5.3.1	Idealized Hamiltonian	148
		5.3.2	Derivation of the Langevin Equations	149
		5.3.3	Inputs and Outputs, and Causality	153
		5.3.4	Several Inputs and Outputs	153
		5.3.5	Formulation of Quantum Stochastic Differential Equations	154
		5.3.6	Quantum Ito Stochastic Integration	155
		5.3.7	Ito Quantum Stochastic Differential Equation	156
		5.3.8	The Quantum Stratonovich Integral	157
		5.3.9	Connection between the Ito and Stratonovich Integral	157
		5.3.10	Stratonovich Quantum Stochastic Differential Equation	158
		5.3.11	Comparison of the Two Forms of QSDE	159
		5.3.12	Noise Sources of Several Frequencies	160
	5.4	The M	aster Equation	161
		5.4.1	Description of the Density Operator	161
		5.4.2	Derivation of the Master Equation	162
		5.4.3	Comparison with Previous Results	163
		5.4.4	Master Equation with Several Frequencies	163
		5.4.5	Equivalence of QSDE and Master Equation	164
		5.4.6	Correlation Functions of Inputs, System, and Outputs	164
6.	Ann	lving th	e Master Equation	169
	6.1	Using	the Number State Basis	169
	~.1	6.1.1	The Damped Harmonic Oscillator—Ouantum Optical Case	169
		6.1.2	The Phase Damped Oscillator	171
	6.2	Quantu	im Classical Correspondence	172
		6.2.1	Use of the P-Representation	172
		622	Time Correlation Functions in the P-Representation	174
		0.4.4	And a strend of a distance in the respected during it is a	

		6.2.3	Application to the Damped Harmonic Oscillator	 175
		6.2.4	General Form for Time Correlation Functions	
			in the P-Representation	 176
	6.3	Some .	Amplifier Models	 176
		6.3.1	A Simple Amplifier	 177
		6.3.2	Comparison of P-, Q- and Wigner Function Methods	 179
		6.3.3	The Degenerate Parametric Amplifier	 179
	6.4	Genera	alized P-Representations	 183
		6.4.1	The R-Representation	 185
		6.4.2	Existence Theorems	 185
		6.4.3	Definition of the Positive P-Representation by Means	
			of the Quantum Characteristic Function	 187
		6.4.4	Operator Identities	 189
		6.4.5	Time-Development Equations	 190
		6.4.6	Complex P-Representation	 191
		6.4.7	Positive P-Representation	 192
	6.5	Applic	ations of the Generalized P-Representations	 194
		6.5.1	Complex P-Representation	 194
	6.6	Applic	ations of the Positive P-Representation	 195
		6.6.1	Linear Systems and Linearization	 196
		6.6.2	Stochastic Simulation	 197
		6.6.3	The Single Mode Laser	 197
		6.6.4	Analytic Treatment via the Deterministic Equation	 199
		6.6.5	Full Stochastic Case	 201
		6.6.6	Numerical Signatures	 202
	6.7	The A	nharmonic Oscillator	 203
		6.7.1	Numerical Signatures	 204
	6.8	Theore	etical Framework of the Problem	 205
		6.8.1	The Power-Law Tails	 205
		6.8.2	The Earliest "Spike" Time	 205
	6.9	Conclu	usions	 209
		6.9.1	Guidelines for Simulations	 209
	6.10	Exam	ple—Quantum Noise in the Parametric Oscillator	 210
7.	Amp	olifiers	and Measurement	 212
	7.1	Input-	Output Theory of Amplifiers and Attenuators	 212
	7.2	Ampli	fiers	 213
		7.2.1	The Inverted Oscillator Heatbath	 213
		7.2.2	The Amplifier Model	 214
		7.2.3	Added Noise	 215
		7.2.4	Signal to Noise Ratio	 217
		7.2.5	"Noise Temperature" of an Amplifier	 217
		7.2.6	QSDEs in the Case of a Negative Temperature Bath .	 218
		7.2.7	Ito QSDEs for Positive and Negative Temperature	 219
		7.2.8	Phase Conjugating Amplifier	 219
		7.2.9	The Degenerate Parametric Amplifier	 220

....

	7.3	The M	lacroscopic Limit in Open Quantum Systems	222
		7.3.1	Example—Quantum Brownian Motion	. 223
		7.3.2	Example—The Quantum Optical Situation	225
		7.3.3	Application to a Model of Quantum Measurement	226
		-		
8.	Pho	ton Coi	inting	230
	8.1	Quant	ization of the Electromagnetic Field	230
		8.1.1	Maxwell's Equations	231
		8.1.2	Expansion in Mode Functions	232
		8.1.3	Quantization by Commutation Relations	233
		8.1.4	Quantization in an Infinite Volume	234
		8.1.5	Optical Electromagnetic Fields	235
		8.1.6	The Photon	236
		8.1.7	Beams of Light	237
	8.2	Photoc	detection and Photon Counting	238
		8.2.1	The Physical Basis of the Detection Formulae	239
		8.2.2	Coherence and Correlation Functions	240
		8.2.3	Normalized Correlation Functions	242
	8.3	Photor	n Counting Formulae	243
		8.3.1	Development of the Formulae	243
		8.3.2	Master Equation	
			and Quantum Stochastic Differential Equations	. 246
		8.3.3	Photon Counting Probabilities	248
		8.3.4	Intensity Correlations	
			and the Hanbury-Brown Twiss Experiment	. 252
		8.3.5	Mandel's Counting Formula	254
		8.3.6	Applications to Particular States	257
		8.3.7	Model for Efficiency Less Than 100%	258
	8.4	Homo	dyne and Heterodyne Detection	259
		8.4.1	Schematic Setup of Homodyne and Heterodyne Detection .	259
		8.4.2	General Formulae	259
		8.4.3	Coherent Signal Detection	261
		8.4.4	Balanced Homodyne/Heterodyne Detection	263
	8.5	Input-	Output Formulations of Photodetection	264
		8.5.1	A One Atom Model	265
		8.5.2	A Model Using Fermi Electrons	267
		8.5.3	A Spatially Distributed Detector Model	270
9.	Inte	raction	of Light with Atoms	276
	9.1	Two L	evel Systems	276
		9.1.1	Pauli Matrix Description	276
		9.1.2	Pauli Matrix Properties	277
		9.1.3	Atoms with More Than Two Levels	278
	9.2	Two L	evel Atom in the Electromagnetic Field	278
		9.2.1	Lamb and Stark Shifts	279
		9.2.2	Rotating Wave Approximation	280

		9.2.3	Master Equation and QSDE	. 281
		9.2.4	Two Level Atom in a Coherent Driving Field	. 285
	9.3	The La	ser	. 289
		9.3.1	Quantum Langevin Equations for the Laser	. 290
		9.3.2	Derivation of Laser Equations	. 296
		9.3.3	Solutions of the Laser Equations	. 301
		9.3.4	The Nature of Laser Light	. 304
	9.4	Optical	Bistability	. 306
	9.5	Other F	Phase Space Methods	. 310
		9.5.1	The Method of Haken, Risken and Weidlich	. 311
		9.5.2	A More Direct Phase Space Method	. 313
			·	
10.	Sque	ezing .		. 322
	10.1	Squeez	ed States of the Harmonic Oscillator	. 322
		10.1.1	Definition of an Ideal Squeezed State	. 323
	10.2	The De	generate Parametric Amplifier	. 324
		10.2.1	Squeezing in the Degenerate Parametric Amplifier	. 325
		10.2.2	Squeezed White Noise	. 330
	10.3	Squeez	ed Light on a Single Atom	. 332
	10.4	Simula	tion Methods Based on the Adjoint Equation	. 334
		10.4.1	Adjoint Equation for Squeezed Light	. 335
		10.4.2	Solution of the Equations of Motion	. 336
		10.4.3	Numerical Methods	. 337
11.	The	Stochas	tic Schrödinger Equation	. 341
	11.1	Quantu	Im Stochastic Schrödinger Equation	. 343
		11.1.1	The Model	. 343
		11.1.2	Validity of the Model	. 343
	11.2	QSDE	for Time Evolution Operators and State Vectors	. 345
		11.2.1	QSDE in Stratonovich Form	. 345
		11.2.2	Conversion from Stratonovich to Ito Form	. 346
		11.2.3	Formal Solution	. 347
		11.2.4	QSDE for the State Vector	. 348
		11.2.5	QSDE for the Stochastic Density Operator	. 349
		11.2.6	QSDE for System Operators	. 350
		11.2.7	Non-vacuum Initial States	. 350
	11.3	Numbe	er Processes and Photon Counting	. 351
		11.3.1	Number Processes and Quantum Stochastic Calculus	. 351
		11.3.2	Input and Output	. 353
		11.3.3	Photon Counting as a Measurement of the $\Lambda(t)$ Operator.	. 354
		11.3.4	Photon Counting and Exclusive Probability Densities	. 357
		11.3.5	Mandel's Counting Formula	. 358
		11.3.6	The Characteristic Functional and System Averages	. 359
		11.3.7	Conditional Dynamics and a Posteriori States	. 362
		11.3.8	Stochastic Schrödinger Equation for Counting Processes	. 364
		11.3.9	Wave Function Simulation: Procedure	. 367

	11.3.10	O Simulation of Correlation Functions and Spectra	369
11.4	Diffusi	ion Processes and Homodyne Detection	371
	11.4.1	Homodyne Detection	371
	11.4.2	The Characteristic Functional and System Averages	372
	11.4.3	Stochastic Schrödinger Equation	373
11.5	Applic	ations and Illustrations	376
	11.5.1	Resonance Fluorescence	
		of Strongly Driven Two-Level Systems	. 377
	11.5.2	Quantum Jumps in Three-Level Atoms	381
	11.5.3	Mechanical Light Effects	384
	11.5.4	Quantized Atomic Motion in Optical Molasses	387
	11.5.5	Localization by Spontaneous Emission	394
12. Case	aded Q	uantum Systems	397
12.1	Coupli	ng Equations	398
	12.1.1	Relation to Input-Output Formalism	399
	12.1.2	Conversion to Quantum Ito Equations	400
	12.1.3	Master Equation	401
	12.1.4	The Lindblad Form	401
	12.1.5	Stochastic Schrödinger Equation	401
	12.1.6	Imperfect Coupling	402
12.2	Applica	ation to Harmonic Oscillator Systems	404
	12.2.1	Driving by Squeezed Light	405
	12.2.2	Two Level Atom Driven by Squeezed Light	406
12.3	Two Le	evel Atom Driven by Antibunched Light	407
	12.3.1	Coherent Excitation of the Source Atom	408
	12.3.2	Incoherent Excitation of the Source Atom	410
12.4	Charac	terizing Non-Classical Light	412
12.5	Transm	nission of Quantum Information	
	Throug	gh a Quantum Network	412
	12.5.1	Quantum Information	412
	12.5.2	Physical Implementation of a Quantum Network	
		with Atoms and Photons	413
	12.5.3	Physical Idea behind Ideal Transmission	413
	12.5.4	Quantum Transmission in a Quantum Trajectory Picture	415
Referenc	ces		419
Bibliogra	aphy .		424
Author I	Index .		426
Subject	Index		477
Jungert	шисл .		741