Technische Optik

von

Dr. Hermann Slevogt

o. Professor an der Technischen Universität Berlin

Mit 163 Abbildungen

Sammlung Göschen Band 9002

Walter de Gruyter Berlin · New York · 1974

Inhalt

Α.	Einführung	
	§ 1. Allgemeine Orientierung; Mittenbüschel	15
		20
	§ 3. Definition der Brennweite; Kardinalpunkte	25
	 \$ 2. Schiefe Büschel; Abbildungsmaßstab und Brennweite \$ 3. Definition der Brennweite; Kardinalpunkte \$ 4. Das Fernrohr und seine Anwendungen 	28
	§ 5. Messung der Brennweite	31
В.	Strahlenoptik im Gauß-Bereich	
	I. Direkte Durchrechnung	
	§ 6. Abbildung durch eine einzelne Fläche	34
	§ 7. Durchrechnung eines ganzen Systems	39
	§ 8. Dicke Einzellinse in Luft	43
	II. Dünne Linsen	
	§ 9. Grundformeln für dünne Linsen	52
	§ 10. Windschiefe Strahlen	57
	§ 11. Astigmatismus und Anamorphote	59
	III. Listings Konstruktion	
	§ 12. Allgemeines	63
	§ 13. Rechnerische Darstellung; Newtons Formeln	66
	§ 14. Blendenlage und Strahlengang; Maßstabsgleichung.	70
	§ 15. Zweigliedrige Systeme	74
	IV. Spiegelnde Flächen	
	§ 16. Durchrechnung; Vorzeichen und Orientierung	78
	§ 17. Kombination ebener Spiegel; Prismen	83
c.	Helligkeitsfragen	
	§ 18. Allgemeines	89
	§ 19. Beleuchtung durch eine kleine Lichtquelle	92
	§ 20. Bild einer kleinen Lichtquelle als Strahler;	
	Strahlertypen	94
	§ 21. Beleuchtungsstärke im Bild einer kleinen	
	Lichtquelle	99
	§ 22. Photographische Belichtung	102
	§ 23. Lamberts Brennglas; Lamberts Strahlungsformel	105
	§ 24. Erhaltung der Leuchtdichte; Lichtleitwert	109
D.	Das Auge und einige optische Instrumente	
	I. Leistungen unseres Sehapparats	
	§ 25. Wahrnehmen und Unterscheiden	113
	§ 26. Akkommodation und Adaptation	116

1 Inhalt

§ 27. Beidäugiges und räumliches Sehen	119
§ 28. Photokamera als Modell des Auges	122
§ 29. Sehschärfe und Auflösungsvermögen	126
II. Unterstützung des Auges durch optische Geräte	
§ 30. Verbesserung der Sehschärfe	128
§ 31. Verbessern der Tiefen-Wahrnehmung	133
§ 32. Lage und Größe der Austrittspupille	135
§ 33. Dämmerungsleistung und andere Besonderheiten	138
3 33. Danimerungstelstung und undere Desenderneiten	150
E. Lichtführung und Planung	
I. Planung für ungestörten Strahlengang	
§ 34. Gaußischer Entwurf und Delano-Diagramm	141
§ 35. Planung für endliche Abmessungen	146
§ 36. Übertragbare Informationsmenge	149
	151
§ 37. Planung eines Periskops	154
§ 38. Einbau von Lichtquellen	134
II. Eingriffe in den Strahlengang	157
§ 39. Schlierenbeobachtung	
§ 40. Foucaults Schneidenverfahren	159
§ 41. Ideale Streuscheibe; erborgte Leuchtdichte	162
§ 42. Einiges über Lichtverluste	164
E Aufrahan Baisniala und Engöngungen	
F. Aufgaben, Beispiele und Ergänzungen	167
§ 43. Astronomische Optik	171
§ 45. Geodätische Optik	174
	179
§ 46. Mikroskopie und Projektion; Strahlungsgrößen	183
§ 47. Interferometer	190
§ 48. Sonderkonstruktionen	195
§ 49. Einige Begriffe und Sätze	203
§ 50. Wellenoptik und Fourier-Transformation	203
Anhang I: Strahlenoptische Abbildungsfehler bei zentrierten	
optischen Systemen	
§ 51. Allgemeines	211
§ 52. Farbfehler	211
§ 53. Monochromatische Abbildungsfehler	216
§ 54. Zusammenhang der Fehler und Einfluß der	
Blendenlage beim Hohlspiegel	222
§ 55. Abbildungsfehler bei dünnen Linsen	225
§ 56. Natürliche Bildfeldwölbung und Satz von Petzval	231
5 50. Haturiene Difficia wording und Saiz von Terzvar	20
Anhang II: Etwas Wellenoptik	
§ 57. Stufe 1: Existenz der Wellenflächen	234
§ 58. Stufe 2: Prinzip der gleichzeitigen Ankunft	240

Inhalt 5

§ 59. Stufe 3: Interferenz allgemein und für zwei Anteile	244
§ 60. Steigerung der Auflösung	252
§ 61. Beugung bei Rotationssymmetrie; Definitions-	
helligkeit	256
§ 62. Beugung und Fourier-Transformation	258
Anhang III: Unscharfe Abbildung	
§ 63. Faltungssatz: Satz von André; Linien- und	
Kantenbild	261
§ 64. Auflösungsvermögen und Übertragungsfunktion.	
Produktsatz	264
§ 65. Übertragungsfunktion als Fourier-Transformierte	
des Linienbilds oder Punktbilds	270
Lösungen zu den Aufgaben	273
Register	289

Die fünf Abschnitte B bis F bilden den Kern der Darstellung. Zur Vorbereitung dient der Bericht im Abschnitt A, während die drei Anhänge bei der Lösung der Aufgaben helfen und zugleich einen weiteren Ausblick vermitteln sollen. Das Register bringt außer den Ortsangaben auch Worterklärungen, weil die technische Optik sehr reich ist an Fachausdrücken.