NETWORK SOLUTION Theory and Practice

A. KŁOS

Professor, Technical University of Warsaw, Warsaw, Poland

P. W. AITCHISON

Professor, University of Manitoba, Winnipeg, Manitoba, Canada

ELLIS HORWOOD
NEW YORK LONDON TORONTO SYDNEY TOKYO SINGAPORE PWN - POLISH SCIENTIFIC PUBLISHERS

Contents

Preface ix
PART I MATHEMATICAL MODELS OF NETWORKS 1
CHAPTER 1 Introduction to Network Modelling and Solution 3
1.1 Introduction 3
1.2 Basic notions 4
1.3 Network laws 6
1.4 Solving a network 7
1.5 Modelling a network 8
CHAPTER 2 An Algebraic Model of the Network Topology 10
2.1 Introduction 10
2.2 Algebraic models of branch, node, cut-set and loop-set 10
2.3 Network topology modelled by cut-set and loop-set incidence matrices 15
2.4 Network topology modelled by tree and cotree inci- dence matrices 18
2.5 The topological matrix of the network 21
CHAPTER 3 A Mathematical Model of the Current and Voltage States of a Network 22
3.1 The current state vector 22
3.2 A linear space model of the current state 23
3.3 A matrix model of the current state of a network 26
3.4 The voltage state vector 29
3.5 A linear space model of the voltage state 30
3.6 A matrix model of the voltage state 33
3.7 The current-voltage state of a network 36
3.8 The current-voltage equations and the state space 42
3.9 Non-linear current-voltage equations 49
CHAPTER 4 Classical Network Theory 51
4.1 Introduction 51
4.2 Alternative development of mesh currents and nodal voltages 52
4.3 Loop-set (mesh) and cut-set (node) analysis 54
4.4 Thevenin's theorem 55
4.5 Norton's theorem 58
4.6 The superposition principle 61
4.7 Tellegen's theorem 62
PART II SOLVING SPECIFIC NETWORK PROBLEMS 63
CHAPTER 5 The Solution Model of a Network 65
5.1 Introduction 65
5.2 Incorporating the input data to complete the solution model of a network 66
5.3 The solution model of a network 70
5.4 Methodology of the network solution process 72
CHAPTER 6 Solving a Network with Known Topology and Branch Parameter Data 74
6.1 Introduction 74
6.2 Forming the algebraic network model 75
6.3 Analysis and solution theory of the algebraic network model 83
6.4 Examples of network solution 89
CHAPTER 7 The Network Solution in the Case of Fully Known Topology 97
7.1 Introduction 97
7.2 The formulation of a network problem 98
7.3 The algebraic model of a network 99
7.4 The classification of solutions of the model 102
7.5 Solving a model which is known to be consistent 103
7.6 An example of the solution of a consistent model 109
7.7 Solving a model which may not be consistent 113
7.8 Example of the solution of an inconsistent model 121
7.9 Least squares solution example 125
CHAPTER 8 Solving Networks with Partial and/or Incon- sistent Data of All Types 129
8.1 Introduction 129
8.2 On knowing the network topology 129
8.3 Forming the algebraic network model 130
8.4 Solvability classification 132
8.5 Solving a consistent model with integer variables 134
8.6 Simple examples of solving a consistent model with integer variables 136
8.7 Identifying and solving an inconsistent model with integer variables 141
PART III SPECIAL METHODS 143
CHAPTER 9 Equivalent Networks 145
9.1 Introduction 145
9.2 Special cases of equivalent networks 146
9.3 Network equations related to the division of a network 152
9.4 Equivalent networks 156
9.5 Deriving an equivalent network 159
9.6 Simple examples of the construction of an equivalent network 161
9.7 The choice of tree/cotree structure 164
CHAPTER 10 Decomposition of Networks 166
10.1 Introduction 166
10.2 A diacoptical method of tearing a network 167
10.3 An example of diacoptical tearing of a network 171
10.4 The second method of network decomposition 172
10.5 Examples of the second method applied to a network 179
APPENDIX 188
Part A Generalized inverse matrices 188
Part B Matrix computation algorithms and theory 189
Part C Network theory and computation algorithms 195
Part D Derivation of the model of an equivalent net- work 209
Part E Rank and generalized inverse of network ma- trices 211
Part F Solution of the matrix equation $Y V=I$ in cases when matrix Y is expressed as a product of matrices 216
REFERENCES 218
INDEX 223

