NETWORK SOLUTION Theory and Practice

A. KŁOS

Professor, Technical University of Warsaw, Warsaw, Poland

P. W. AITCHISON

Professor, University of Manitoba, Winnipeg, Manitoba, Canada

ELLIS HORWOOD NEW YORK LONDON TORONTO SYDNEY TOKYO SINGAPORE PWN – POLISH SCIENTIFIC PUBLISHERS WARSAW

Contents

Preface	ix
PART I MATHEMATICAL MODELS OF NETWORKS .	1
CHAPTER 1 Introduction to Network Modelling and Solution	3
1.1 Introduction \ldots \ldots \ldots \ldots \ldots \ldots	3
1.2 Basic notions	4
1.3 Network laws	6
1.4 Solving a network	7
1.5 Modelling a network	8
CHAPTER 2 An Algebraic Model of the Network Topology	10
2.1 Introduction	10
2.2 Algebraic models of branch, node, cut-set and loop-set	10
2.3 Network topology modelled by cut-set and loop-set	
incidence matrices	15
2.4 Network topology modelled by tree and cotree inci-	
dence matrices \ldots \ldots \ldots \ldots \ldots \ldots	18
2.5 The topological matrix of the network \ldots \ldots	21
CHADTED 2 A Mathematical Model of the Comment and	
Veltage States of a Natural	<u>-</u>
2.1 The surrout state vector	22
3.1 The current state vector	22 92
3.2 A metrix model of the current state of a network	20 26
2.4 The voltage state vector	20
2.5 A linear space model of the voltage state	29 20
3.5 A metric model of the voltage state	ას იე
2.7 The surrent voltage state of a network	00 26
3.7 The current voltage state of a network	30 49
2.0 New linear surrent values associate space .	42
3.9 Non-linear current-voltage equations	49
CHAPTER 4 Classical Network Theory	51
4.1 Introduction \ldots \ldots \ldots \ldots \ldots	51
4.2 Alternative development of mesh currents and nodal	
voltages	52
4.3 Loop-set (mesh) and cut-set (node) analysis	54
4.4 Thevenin's theorem	55

-

Contents	3
----------	---

4.5 Norton's theorem	58
4.6 The superposition principle	61
4.7 Tellegen's theorem	62
PART II SOLVING SPECIFIC NETWORK PROBLEMS .	63
CHAPTER 5 The Solution Model of a Network	65
5.1 Introduction	65
5.2 Incorporating the input data to complete the solution	
model of a network	66
5.3 The solution model of a network	70
5.4 Methodology of the network solution process \ldots .	72
CHAPTER 6 Solving a Network with Known Topology and	
Branch Parameter Data	74
6.1 Introduction	74
6.2 Forming the algebraic network model	75
6.3 Analysis and solution theory of the algebraic network	
model	83
6.4 Examples of network solution	89
CHAPTER 7 The Network Solution in the Case of Fully	
Known Topology	97
7.1 Introduction	97
7.2 The formulation of a network problem \ldots \ldots	98
7.3 The algebraic model of a network \ldots \ldots \ldots	99
7.4 The classification of solutions of the model \ldots \ldots	102
7.5 Solving a model which is known to be consistent .	103
7.6 An example of the solution of a consistent model .	109
7.7 Solving a model which may not be consistent \ldots	113
7.8 Example of the solution of an inconsistent model .	121
7.9 Least squares solution example \ldots \ldots \ldots \ldots	125
CHAPTER 8 Solving Networks with Partial and/or Incon-	
sistent Data of All Types	129
8.1 Introduction	129
8.2 On knowing the network topology	129
8.3 Forming the algebraic network model \ldots \ldots \ldots	130
8.4 Solvability classification	132
8.5 Solving a consistent model with integer variables .	134
8.6 Simple examples of solving a consistent model with	
integer variables	136

vi

Contents

8.7 Identifying and solving an inconsistent mod integer variables	lel wit	h . 141
PART III SPECIAL METHODS		. 143
CHAPTER 9 Equivalent Networks		. 145
9.1 Introduction	• •	. 145
9.2 Special cases of equivalent networks		. 146
9.3 Network equations related to the division of a	netwo	rk 152
9.4 Equivalent networks		. 156
9.5 Deriving an equivalent network		. 159
9.6 Simple examples of the construction of an eq	uivaler	nt
network		. 161
9.7 The choice of tree/cotree structure	• •	. 164
CHAPTER 10 Decomposition of Networks		. 166
10.1 Introduction		166
10.2 A diacontical method of tearing a network	•••	167
10.3 An example of diacontical tearing of a network	rk	171
10.4 The second method of network decomposition		172
10.5 Examples of the second method applied to a	networ	rk 179
APPENDIX		188
Part A Generalized inverse matrices	•••	188
Part B Matrix computation algorithms and theory	 v	180
Part C. Network theory and computation algorithm	, . me	. 105
Part D Derivation of the model of an equivale	n = 1	. 190 +
work	int ne	ະ- <u>າ</u> ດດ
Part E Rank and generalized inverse of netwo	· · vrk ma	. 209 a-
trices		. 211
Part F Solution of the matrix equation YV :	= I i	n
cases when matrix r is expressed as a pro	Juuct (л - 016
matrices	•••	. 216
REFERENCES	• •	. 218
INDEX		. 223

vii