Introduction to Statistical Optics

EDWARD L. O'NEILL

Department of Physics, Worcester Polytechnic Institute

DOVER PUBLICATIONS, INC. New York

Contents

Chapter 1. GREEN'S FUNCTION AND LINEAR THEORY	
1–1 Linear second-order differential operators	1
1-2 Self-adjoint operators	3
1-3 Nonself-adjoint operators	5
1–4 The inhomogeneous equation	5
1–5 Determination of the Green's function	6
1-6 The principle of linear superposition in optical image formation .	10
	- •
Chapter 2. SPATIAL VERSUS TIME FILTERS	
2_1 Time filters	12
2-1 Time muers	15
2-2 Classification of input signals	10
2-5 Random signals	20
2-4 Optical spatial inters	20
2-5 The optical contrast transfer function	22
2-6 An idealized illustration	25
$2-7$ Image motion \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	27
Chapter 3. INTRODUCTION TO GEOMETRICAL OPTICS	
$3-1$ Fermat's principle and Snell's law of refraction \ldots \ldots \ldots	30
3-2 Sign convention	32
3-3 Refraction matrix	32
3–4 Translation matrix	34
3-5 Paraxial approximation	36
3-6 Image formation	37
3-7 The cardinal points	38
$3-8$ Illustrations \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	40
Chapter 4. THE GEOMETRICAL THEORY OF ABERRATIONS	
4-1 Wave aberration function	46
4-2 Geometrical versus physical optics	47
4-3 Equations for the ray intercents	49
4-4 Ontimum balancing of third- and fifth-order subgrided aberrations	58
4-5 The Maráchel method of cherration helencing	62
4-5 The Watechar method of abertation balancing	66
4-0 All mustration, a single renecting surface.	68
	08
Chapter 5 DIFERACTION THEORY OF IMAGE FORMATION	
	70
5-1 General considerations	70
5–2 Basic diffraction problem	72

CONTENTS

5 - 3	Equations governing image formation								75
5 - 4	Diffraction by a slit								79
5 - 5	The Michelson stellar interferometer								80
5 - 6	Diffraction by a circular aperture	•							83
Chapte	r 6. ANALYSIS AND SYNTHESIS								
6-1	General considerations								86
6_2	Small aberrations	•	·	·	·	·	·	•	87
6-3	Amplitude and phase variations in one dime	neic		·	·	·	·	·	80
6-4	Amplitude and phase variations in two dime	nsi	n ng	•	•	•	•	•	05
6-5	Random phase arrors	11610	5115	·	·	·	·	·	00
6-6	The synthesis problem coherent illumination	n	•	·	•	·	•	•	101
0.0	The synthesis problem, concrete munihado		•	•	•	•	•	•	101
Chapte	r 7. STATISTICAL METHODS								
7 - 1	Random scenes	•							105
7 - 2	Further statistical considerations; graininess	an	d gi	ran	ulaı	rity		•	109
7 - 3	Checkerboard model								113
7-4	Overlapping circular grain model					•			.115
.	A MATRIX AND CONFRENCE THEORY								
Chapte	F 8. MATRIX AND COHERENCE THEORY								
8 - 1	Introduction: Wolf's mutual coherence funct	tion	•	•	•	•			122
8 - 2	Image formation		•					•	124
8-3	Matrix theory	•	•	•	•	•	•	•	127
Chapte	r 9. THE THEORY OF PARTIAL POLARIZA	тіс	N						
9-1	Introduction								133
9_2	Innouletion	•	•	•	·	•	·	•	135
9_2	The coherency matrix formalism	•	•	•	·	•	·	•	137
0_4	The Stokes parameters and the Muellar met	hod	·	·	·	·	·	·	149
9-4 9-5	Selected topics	nou	•	•	•	·	•	·	142
5-0		•	·	•	·	•	·	•	110
Appen	dix A. FOURIER-BESSEL SERIES AND INTEG	RA	LS						
A-1	Fourier series								157
A-2	Fourier integral								159
A-3	Fourier theory in two dimensions								160
A-4	The convolution theorem		•			- h			161
A-5	The sampling theorem		ċ	•	·				163
		•	•	•	•	•	•	•	100
Append	dix B. PROBABILITY AND ENTROPY THEO	RY							
В-1	The binomial, Poisson, and normal distribut	ions	3						166
B-2	The concept of entropy								167
В-3	The illumination matrix in the coherent limit	t				• /			172
INDEX									177