Transputers in Real-Time Control

Edited by

G. W. Irwin The Queen's University of Belfast, UK and **P. J. Fleming** University of Sheffield, UK

RESEARCH STUDIES PRESS LTD. Taunton, Somerset, England

JOHN WILEY & SONS INC. New York · Chichester · Toronto · Brisbane · Singapore

Contents

List of Contributors				
1	Intro	troduction		
	11	Preliminaries	1	
	1.2	The challenge of real-time control	3	
	1.3	Real-time hardware solutions	5	
	1.4	Parallel processing	6	
	1.5	Transputer and occam	10	
	1.6	Transputer-based real-time control	14	
	1.7	Overview of book	20	
2	Simulation of Nonlinear Chemical Processes and Control			
	Syste	ems	26	
	2.1	Introduction	26	
	2.2	Alternative parallelisation strategies	28	
	2.3	Case study one: a simulator for complex distillation processes	30	
	2.4	Preamble to case studies two and three: numerical methods for		
		algebraic equations on MIMD computers	37	
	2.5	Case study two: flow networks, evaluation by row	41	
	2.6	Case study three: dynamic flowsheet simulation, evaluation by		
		column	48	
	2.7	Evaluation and optimisation of parallel processing strategies	50	
	2.8	Conclusions	51	
3	Tran	sputer-Based Control of Mechatronic Systems	53	
	3.1	Introduction	53	
	3.2	System architecture	54	
	3.3	Transputer LINX backplane and process interface	58	
	3.4	The real-time language TASC	60	
	3.5	The protection layer	75	
	3.6	The communication layer	81	

4	Paralle	el Processing for Real-Time Flight Control	95	
	4.1	Introduction	95	
	4.2	Aircraft equations	98	
	4.3	Optimal control problem	105	
	4.4	Real-time implementation	107	
	4.5	Results and conclusions	116	
5	Paralle	el Adaptive Control of a Synchronous Generator	122	
	5.1	Introduction	122	
	5.2	Application of the STR to the turbogenerator system	124	
	5.3	A heuristic approach to adaptive parallel control	127	
	5.4	A systolic array approach to adaptive parallel control	132	
	5.5	Discussion and conclusions	137	
	Append	dix The self-tuning regulator and supervision scheme	141	
6	Contro	ol of High-Performance AC Induction Motor Drives	148	
	6.1	Introduction	148	
	6.2	Control of induction motors	150	
	6.3	Implementation of indirect vector control	155	
	6.4	The parallel structure of motor control	161	
	6.5	Transputer implementation of vector control	164	
	6.6	Experimental results	169	
	6.7	Discussion	172	
	6.8	Conclusions	175	
7	The Application of Parallel Processing Techniques to Eddy-Current NDT			
			4.50	
	7.1	Introduction	178	
	7.2	System modelling	180	
	7.3	Estimation algorithm	185	
	7.4	The hardware implementation	188	
	7.5	Computational requirements	191	
	7.6	Results	194	
	7.7	Possible improvements	196	
	7.8	Conclusion	197	
8	Hardware Fault-Tolerance: Possibilities and Limitations offered by			
	Transp	Juici 5	202	
	8.1	Introduction	202	
	8.2	Fault-tolerance : definitions, principles and fault-study	203	
	8.3	Fault-tolerance for uniprocessor applications	205	

х

	8.4 8.5	Fault-tolerance for multiprocessor applications Conclusions	219 235
9	A Fo	ormal Approach to the Software Control of High-Speed	
-	Mach	inery	239
	9.1	Introduction	239
	9.2	The design of flexible high-speed machines	240
	9.3	Software engineering techniques for concurrent real-time	
		systems	243
	9.4	Petri nets	248
	9.5	Petri net modelling of concurrent software	255
	9.6	The design of software fault tolerance mechanisms using Petri	
		net techniques	260
	9.7	Control application	265
	9.8	Controller design	277
	9.9	Conclusions	279
10	Real-	Time Control and Simulation Performance Analysis Tools	283
	10.1	Introduction	283
	10.2	EPICAS	285
	10.3	Flight control law example	287
	10.4	Mapping strategy	289
	10.5	Task allocation methods and transputer network topologies	293
	10.6	Performance analysis	299
	10.7	Concluding remarks	306
Iñdex			311

xi