# CHARACTERIZATION OF OPTICAL MATERIALS

**EDITOR** 

Gregory J. Exarhos

MANAGING EDITOR

Lee E. Fitzpatrick



BUTTERWORTH-HEINEMANN

Boston London Oxford Singapore Sydney Toronto Wellington

MANNING Greenwich

#### **Contents**

Preface to Series ix

Preface x

Contributors xii

#### INTRODUCTION I

# PART I: INFLUENCE OF SURFACE MORPHOLOGY AND MICROSTRUCTURE ON OPTICAL RESPONSE

#### CHARACTERIZATION OF SURFACE ROUGHNESS

- 1.1 Introduction 9
- 1.2 What Surface Roughness Is 10
- 1.3 How Surface Roughness Affects Optical Measurements 14
- 1.4 How Surface Roughness and Scattering Are Measured 14
- 1.5 Characterization of Selected Surfaces 20
- 1.6 Future Directions 23

## CHARACTERIZATION OF THE NEAR-SURFACE REGION USING POLARIZATION-SENSITIVE OPTICAL TECHNIQUES

- 2.1 Introduction 27
- 2.2 Ellipsometry 29
  Experimental Implementations of Ellipsometry 29, Analysis of Ellipsometry Data 32
- 2.3 Microstructural Determinations from Ellipsometry Data 34
  Temperature Dependence of the Optical Properties of Silicon 34,
  Determination of the Optical Functions of Glasses Using SE 35,
  Spectroscopic Ellipsometry Studies of SiO<sub>2</sub>/Si 37, Spectroscopic
  Ellipsometry for Complicated Film Structures 38, Time-Resolved
  Ellipsometry 40, Single-Wavelength Real-Time Monitoring of Film
  Growth 41, Multiple-Wavelength Real-Time Monitoring of Film
  Growth 42, Infrared Ellipsometry Studies of Film Growth 44

### THE COMPOSITION, STOICHIOMETRY, AND RELATED MICROSTRUCTURE OF OPTICAL MATERIALS

- 3.1 Introduction 49
- 3.2 Aspects of Raman Scattering 50
- 3.3 III-V Semiconductor Systems 51
- 3.4 Group IV Materials 56
- 3.5 Amorphous and Microcrystalline Semiconductors 59
  Chalcogenide Glasses 60, Group IV Microcrystalline Semiconductors 63
- **3.6** Summary 66

#### DIAMOND AS AN OPTICAL MATERIAL

- 4.1 Introduction 71
- 4.2 Deposition Methods 72.
- 4.3 Optical Properties of CVD Diamond 74
- 4.4 Defects in CVD Diamond 76
- 4.5 Polishing CVD Diamond 79
- 4.6 X-ray Window 80
- 4.7 Summary 81

# PART II: STABILITY AND MODIFICATION OF FILM AND SURFACE OPTICAL PROPERTIES

#### **MULTILAYER OPTICAL COATINGS**

- 5.1 Introduction 87
- 5.2 Single-Layer Optical Coatings 89Optical Constants 90, Composition Measurement Techniques 91
- Multilayer Optical Coatings 106
   Compositional Analysis 107, Surface Analytical Techniques 108,
   Microstructural Analysis of Multilayer Optical Coatings 109
- 5.4 Stability of Multilayer Optical Coatings III
- 5.5 Future Compositional and
  Microstructural Analytical Techniques 113

### CHARACTERIZATION AND CONTROL OF STRESS IN OPTICAL FILMS

- **6.1** Introduction 117
- 6.2 Origins of Stress 119

- 6.3 Techniques for Modifying or Controlling
  Film Stress 124
  Effect of Deposition Parameters 124, Effect of Ion-Assisted
  Deposition 127, Effect of Impurities 127, Effect of Post
  Deposition Annealing 128
- 6.4 Stress Measurement Techniques 130
  Substrate Deformation 130, X-Ray Diffraction (XRD) 133,
  Raman Spectroscopy 134
- 6.5 Future Directions 136

#### SURFACE MODIFICATION OF OPTICAL MATERIALS

- 7.1 Introduction 141
- 7.2 Fundamental Processes 142 Ion–Solid Interactions 142, Defect Production, Rearrangement, and Retention 143
- 7.3 Ion Implantation of Some Optical Materials 145 Glasses and Amorphous Silica 145, α-Quartz (SiO<sub>2</sub>) 147, Halides 148, Sapphire (α-Al<sub>2</sub>O<sub>3</sub>) 149, LiNbO<sub>3</sub> 152, Preparation of Optical Components by Ion Implantation 153

#### LASER-INDUCED DAMAGE TO OPTICAL MATERIALS

- 8.1 Introduction 157
- 8.2 Laser Damage Definition and Statistics 158
  Defining Damage 158, Collecting Damage Statistical Data 159,
  Types of Damage Probability Distributions 160, Identification of
  Pre-Damage Sites 160, Changing the Damage Threshold 161
- 8.3 In Situ Diagnostics 165
  Photothermal Techniques 165, Particle Emission 168
- 8.4 Postmortem Diagnostics 170
  Surface Charge State 170, Surface Phase and Structure Analysis 171
- 8.5 Future Directions 174

#### **APPENDIX: TECHNIQUE SUMMARIES**

- 1 Auger Electron Spectroscopy (AES) 181
- 2 Cathodoluminescence (CL) 182
- 3 Electron Energy-Loss Spectroscopy in the Transmission Electron Microscope (EELS) 183
- 4 Energy-Dispersive X-Ray Spectroscopy (EDS) 184
- 5 Fourier Transform Infrared Spectroscopy (FTIR) 185
- 6 Light Microscopy 186

- 7 Modulation Spectroscopy 187
- 8 Nuclear Reaction Analysis (NRA) 188
- 9 Optical Scatterometry 189
- 10 Photoluminescence (PL) 190
- 11 Photothermal Displacement Technique 191
- 12 Raman Spectroscopy 193
- 13 Rutherford Backscattering Spectrometry (RBS) 194
- 14 Scanning Electron Microscopy (SEM) 195
- 15 Scanning Transmission Electron Microscopy (STEM) 196
- 16 Scanning Tunneling Microscopy and Scanning Force Microscopy (STM and SFM) 197
- 17 Static Secondary Ion
  Mass Spectrometry (Static SIMS) 198
- 18 Surface Roughness: Measurement, Formation by Sputtering, Impact on Depth Profiling 199
- 19 Total Internal Reflection Microscopy 200
- 20 Transmission Electron Microscopy (TEM) 202
- 21 Variable-Angle Spectroscopic Ellipsometry (VASE) 203
- 22 X-Ray Diffraction (XRD) 204
- 23 X-Ray Fluorescence (XRF) 205
- 24 X-Ray Photoelectron Spectroscopy (XPS) 206

Index 207