POLARIZED LIGHT FUNDAMENTALS AND APPLICATIONS

EDWARD COLLETT

Measurement Concepts, Inc. Colts Neck, New Jersey

Marcel Dekker, Inc.

New York • Basel • Hong Kong

About the Series	iii
Preface	v
A Historical Note	xiii

PART I THE CLASSICAL OPTICAL FIELD

Chapter 1	Introduction	1
-	References	2
Chapter 2	The Wave Equation in Classical Optics	3
	2.1 Introduction	3
	2.2 The Wave Equation	4
	2.3 Young's Interference Experiment	11
	2.4 Reflection and Transmission of a Wave at an Interface	15
	References	20
Chapter 3	The Polarization Ellipse	21
	3.1 Introduction	21
	3.2 The Instantaneous Optical Field and the Polarization Ellipse	22
	3.3 Specialized (Degenerate) Forms of the Polarization	
	Ellipse	25
	3.4 The Elliptical Parameters of the Polarization Ellipse	27
	References	31

Chapter 4	The Stokes Polarization Parameters	33
	4.2 The Derivation of the Stokes Polarization Parameters	34
	4.3 The Stokes Vector	39
	4.4 The Classical Measurement of the Stokes Polarization Parameters	46
	4.5 The Stokes Parameters for Unpolarized and Partially Polarized Light	50
	4.6 Additional Properties of the Stokes Polarization	50
	4.7 The Stokes Parameters and Wolf's Coherency Matrix References	62 65
Chapter 5	The Mueller Matrices for Polarizing Components	67
-	5.1 Introduction	67
	5.2 The Mueller Matrix of a Polarizer	69
	5.3 The Mueller Matrix of a Retarder	74
	5.4 The Mueller Matrix of a Rotator	//
	Components	70
	5.6 The Generation of Elliptically Polarized Light	86
	References	89
Chapter 6	Methods for Measuring the Stokes Polarization Parameters	91
-	6.1 Introduction	91
	6.2 The Classical Measurement Method—The	
	Quarter-Wave Retarder Polarizer Method	92
	6.3 The Measurement of the Stokes Parameters Using a	05
	Circular Polarizer	100
	6.5 Fourier Analysis Using a Rotating Quarter-Wave	100
	Retarder	103
	6.6 The Method of Kent and Lawson	107
	6.7 Simple Tests to Determine the State of Polarization of	
	an Optical Beam	114
	References	122
Chapter 7	The Measurement of the Characteristics of Polarizing	
	Elements	123
	7.1 Introduction	123
	7.2 The Measurement of the Attenuation Coefficients of a	104
	rotarizer (Diattenuator)	124
	7.5 The Measurement of the Rotation Angle of a Rotator	130
	References	138
Chapter 8	Mueller Matrices for Reflection and Transmission	139
_	8.1 Introduction	139
	8.2 Fresnel's Equations for Reflection and Transmission	141

	8.3	The Mueller Matrices for Reflection and Transmission at an Air-Dielectric Interface	143
	8.4	Special Forms for the Mueller Matrices for Reflection	
		and Transmission	149
		References	161
Chapter 9	The]	Mueller Matrices for Dielectric Plates	163
	9.1	Introduction The Diagonal Mueller Matrix and the ABCD	163
	9.2	Polarization Matrix	164
	9.3	The Mueller Matrices for Single and Multiple	101
		Dielectric Plates	172
		References	184
Chapter 10	The .	Jones Matrix Calculus	187
-	10.1	Introduction	187
	10.2	The Jones Vector	188
	10.3	The Jones Matrices for the Polarizer, Retarder, and	100
	10.4	Rotator	193
	10.4	Applications of the Jones vector and the Jones	108
	10 5	The Iones Matrices for Homogeneous Elliptical	190
	10.0	Polarizers and Retarders	208
		References	217
Chapter 11	The 1	Poincaré Sphere	219
•	11.1	Introduction	219
	11.2	The Theory of the Poincaré Sphere	221
	11.3	Projection of the Complex Plane onto a Sphere	237
	11.4	Applications of the Poincaré Sphere	244
		References	253
Chapter 12	The	Interference Laws of Fresnel and Arago	255
	12.1	Introduction	255
	12.2	The Mathematical Statements for Unpolarized Light	256
	12.3	I jobt	250
	12 /	Light	230
	12.4	Interference I aws	262
	12.5	The Second Experiment—The Third Interference	202
		Law	268
	12.6	The Third Experiment—The Fourth Interference Law	270
	12.7	The Herschel-Stokes Experiment	273
	12.8	Summary of the Fresnel-Arago Interference Laws	275
		References	277

PART II THE CLASSICAL AND QUANTUM THEORY OF RADIATION BY ACCELERATING CHARGES

Chapter 13	Introduction References	279 280
Chapter 14	Maxwell's Equations for the Electromagnetic Field References	283 288
Chapter 15	 The Classical Radiation Field 15.1 The Field Components of the Radiation Field 15.2 The Relation between the Poynting Vector and the Stokes Parameters References 	289 289 294 299
Chapter 16	 Radiation Emitted by Accelerating Charges 16.1 Stokes Vector for a Linearly Oscillating Charge 16.2 Stokes Vector for an Ensemble of Randomly Oriented Oscillating Charges 16.3 Stokes Vector for a Charge Rotating in a Circle 16.4 Stokes Vector for a Charge Moving in an Ellipse References 	301 301 304 308 310 312
Chapter 17	 The Radiation of an Accelerating Charge in the Electromagnetic Field 17.1 The Motion of a Charge in an Electromagnetic Field 17.2 The Stokes Vectors for Radiation Emitted by Accelerating Charges References 	313 313 329 333
Chapter 18	 The Classical Zeeman Effect 18.1 Historical Introduction 18.2 The Motion of a Bound Charge in a Constant Magnetic Field 18.3 The Stokes Vector for the Zeeman Effect References 	335 335 337 345 351
Chapter 19	 Further Applications of the Classical Radiation Theory 19.1 Relativistic Radiation and the Stokes Vector for a Linear Oscillator 19.2 Relativistic Motion of a Charge Moving in a Circle—Synchrotron Radiation 19.3 The Čerenkov Effect 19.4 Thomson and Rayleigh Scattering References 	353 353 360 367 377 385
Chapter 20	 The Stokes Parameters and Mueller Matrices for Optical and Faraday Rotation 20.1 Introduction 20.2 Optical Rotation 20.3 Faraday Rotation in a Transparent Medium 	387 387 389 395

	20.4	Faraday Rotation in a Plasma References	399 401
Chapter 21	The \$21.1	Stokes Parameters for Quantum Systems Introduction The Relation Between the Stokes Polarization	403 403
	21.2	Parameters and the Quantum Mechanical Density Matrix The Radiation Equations for Quantum Mechanical	405
	21.5	Systems Stology Vactors for Quantum Machanical Systems	418
	21.4	References	422
PART III A	PPLI	CATIONS	
Chapter 22	Intro	duction	431
Chapter 23	Cryst	al Optics	433

Chapter 23	Cryst 23.1 23.2 23.3	tal Optics Introduction The Propagation of Light through Anisotropic Media References The Electro-optical Effect—Modulation, Optical Shutters, and Q-Switching References	433 433 434 455 456 467
	23.4	Polaroid and Polarizers and Their Performance Parameters References	468 479
Chapter 24	Optio	cs of Metals	481
	24.1	Introduction	481
	24.2	Maxwell's Equations for Absorbing Media	483
	24.3 24.4	The Principal Angle of Incidence Measurement of the Refractive Index and Extinction Coefficient of Optically Absorbing Materials Measurement of the Refractive Index and Extinction Coefficient at an Incident Angle of 45°	491 499
		References	513
Chapter 25	Ellip	sometry	515
•	25.1	Introduction	515
	25.2	The Fundamental Equation of Classical Ellipsometry	517
	25.3	The Classical Measurement of the Ellipsometric	
		Parameters Psi (ψ) and Delta (Δ)	519
	25.4	The Solution of the Fundamental Equation of	
		Ellipsometry	528
	25.5	Further Developments in Ellipsometry—The Mueller	
		Matrix Representation of ψ and Δ	547
		References	554

1

Appendix	Vector Representation of the Optical Field—Application to	
	Optical Activity	557
	References	567
Index		569