NUMERICAL METHODS USING MATLAB

Dr John Penny
George Lindfield
Department of Mechanical Engineering, Aston University

ELLIS HORWOOD
NEW YORK LONDON TORONTO SYDNEY TOKYO SINGAPORE

Contents

Preface xi
1 An introduction to Matlab
1.1 The software package MATLAB 1
1.2 MATLAB on personal computers and workstations 2
1.3 Matrices and matrix operations in MATLAB 3
1.4 Using the MATLAB operator \backslash for matrix division 4
1.5 Manipulating the elements of a matrix 4
1.6 Transposing matrices 5
1.7 Special matrices 6
1.8 Generating matrices with specified element values 7
1.9 Some special matrix operations 7
1.10 Element-by-element operations 7
1.11 Input and output in MATLAB 8
1.12 MATLAB graphics 10
1.13 Three-dimensional graphics 14
1.14 Scripting in MATLAB 16
1.15 Functions in Matlab 20
1.16 User-defined functions 21
1.17 Some pitfalls in Matlab 23
1.18 Speeding up calculations in MATLAB 24
Problems 25
2 Linear equations and eigensystems
2.1 Introduction 28
2.2 Linear equation systems 31
2.3 Matlab operators \backslash and / for solving $\mathbf{A x}=\mathbf{b}$ 36
2.4 Accuracy of solutions and ill-conditioning 41
2.5 Elementary row operations 44
2.6 Solution of $\mathbf{A x}=\mathbf{b}$ by Gaussian elimination 45
2.7 LU decomposition 47
2.8 Cholesky decomposition 51
2.9 QR decomposition 53
2.10 Singular value decomposition 56
2.11 The pseudo-inverse 60
2.12 Over-determined systems 62
2.13 Iterative methods 65
2.14 Sparse matrices 66
2.15 The eigenvalue problem 75
2.16 The MATLAB function eig 78
2.17 Summary 82
Problems 82
3 Roots of equations
3.1 Introduction 85
3.2 The nature of solutions to non-linear equations 87
3.3 The bisection algorithm 89
3.4 Iterative or fixed point methods 89
3.5 The convergence of iterative methods 90
3.6 Ranges for convergence and chaotic behaviour 92
3.7 Newton's method 94
3.8 Schroder's method 98
3.9 Numerical problems 99
3.10 The MATLAB function fzero and comparative studies 102
3.11 Methods for finding all the roots of a polynomial 103
3.12 Bairstow's method 103
3.13 Laguerre's method 107
3.14 Solving systems of non-linear equations 108
3.15 Broyden's method for solving non-linear equations 112
3.16 Comparing the Newton and Broyden methods 115
3.17 Summary 116
Problems 116

Contents

4 Differentiation and integration

4.1 Introduction 120
4.2 Numerical differentiation 121
4.3 Numerical integration 124
4.4 Simpson's rule 126
4.5 Newton-Cotes formulae 129
4.6 Romberg integration 131
4.7 Gaussian integration 133
4.8 Infinite ranges of integration 136
4.9 Gauss-Chebyshev formulae 140
4.10 Filon's sine and cosine formulae 141
4.11 Problems in the evaluation of integrals 145
4.12 Test integrals 147
4.13 Repeated integrals 149
4.14 Simpson's rule for repeated integrals 150
4.15 Gaussian integration for repeated integrals 152
4.16 Summary 154
Problems 155
5 Differential equations
5.1 Introduction 159
5.2 Euler's method 161
5.3 The problem of stability 163
5.4 The trapezoidal method 166
5.5 Runge-Kutta methods 168
5.6 Predictor-corrector methods 173
5.7 Hamming's method and the use of error estimates 175
5.8 Error propagation in differential equations 177
5.9 The stability of particular numerical methods 178
5.10 Systems of simultaneous differential equations 180
5.11 The Lorenz equations 184
5.12 The predator-prey problem 186
5.13 Differential equations applied to neural nets 187
5.14 Higher-order differential equations 191
5.15 Stiff equations 192
5.16 Special techniques 195
5.17 Extrapolation techniques 198
5.18 Summary 200
Problems 200
6 Boundary value problems
6.1 Introduction 202
6.2 The shooting method 204
6.3 The finite difference method 206
6.4 Two-point boundary value problems 208
6.5 Parabolic partial differential equations 214
6.6 Hyperbolic partial differential equations 218
6.7 Elliptic partial differential equations 221
6.8 Summary 227
Problems 228
7 Fitting functions to data
7.1 Introduction 231
7.2 Interpolation using polynomials 231
7.3 Interpolation using splines 234
7.4 Fourier analysis of discrete data 238
7.5 Fitting functions to data: least squares criteria 252
7.6 Polynomial least squares 254
7.7 A problem with polynomial least squares fitting 257
7.8 General least squares 258
7.9 Transforming data 260
7.10 Summary 263
Problems 264
8 Optimisation methods
8.1 Introduction 269
8.2 Linear programming problems 269
8.3 The conjugate gradient method 276
8.4 The conjugate gradient algorithm for solving linear equation systems 281
8.5 Genetic algorithms 284
8.6 Summary 295
Problems 295
Appendix 1 - Matrix algebra
A1.1 Introduction 297
A1.2 Matrices and vectors 297
A1.3 Some special matrices 298
A1.4 Determinants 299
A1.5 Matrix operations 300
A1.6 Complex matrices 301
A1.7 Matrix properties 302
A1.8 Some matrix relationships 302
A1.9 Eigenvalues 303
A1.10 Definition of norms 303
A1.11 Reduced row echelon form 304
Appendix 2 - List of Matlab functions 305
References 309
Solutions to problems 313
Index 323

