# **NUMERICAL METHODS USING MATLAB**

**Dr John Penny George Lindfield** Department of Mechanical Engineering, Aston University



**IS HORWOOD** NEW YORK LONDON TORONTO SYDNEY TOKYO SINGAPORE

## Contents

### Preface

| 1 | An i | ntroduction to MATLAB                             |    |
|---|------|---------------------------------------------------|----|
|   | 1.1  | The software package MATLAB                       | 1  |
|   | 1.2  | MATLAB on personal computers and workstations     | 2  |
|   | 1.3  | Matrices and matrix operations in MATLAB          | 3  |
|   | 1.4  | Using the MATLAB operator \ for matrix division   | 4  |
|   | 1.5  | Manipulating the elements of a matrix             | 4  |
|   | 1.6  | Transposing matrices                              | 5  |
|   | 1.7  | Special matrices                                  | 6  |
|   | 1.8  | Generating matrices with specified element values | 7  |
|   | 1.9  | Some special matrix operations                    | 7  |
|   | 1.10 | Element-by-element operations                     | 7  |
|   | 1.11 | Input and output in MATLAB                        | 8  |
|   | 1.12 | MATLAB graphics                                   | 10 |
|   | 1.13 | Three-dimensional graphics                        | 14 |
|   | 1.14 | Scripting in MATLAB                               | 16 |
|   | 1.15 | Functions in MATLAB                               | 20 |
|   | 1.16 | User-defined functions                            | 21 |
|   | 1.17 | Some pitfalls in MATLAB                           | 23 |
|   | 1.18 | Speeding up calculations in MATLAB                | 24 |
|   | Prob | lems                                              | 25 |

xi

| Con | tents |
|-----|-------|
|-----|-------|

| 2 | Line | ar equations and eigensystems                     |     |
|---|------|---------------------------------------------------|-----|
|   | 2.1  | Introduction                                      | 28  |
|   | 2.2  | Linear equation systems                           | 31  |
|   | 2.3  | MATLAB operators $\ \ d = b$                      | 36  |
|   | 2.4  | Accuracy of solutions and ill-conditioning        | 41  |
|   | 2.5  | Elementary row operations                         | 44  |
|   | 2.6  | Solution of $Ax = b$ by Gaussian elimination      | 45  |
|   | 2.7  | LU decomposition                                  | 47  |
|   | 2.8  | Cholesky decomposition                            | 51  |
|   | 2.9  | QR decomposition                                  | 53  |
|   | 2.10 | Singular value decomposition                      | 56  |
|   | 2.11 | The pseudo-inverse                                | 60  |
|   | 2.12 | Over-determined systems                           | 62  |
|   | 2.13 | Iterative methods                                 | 65  |
|   | 2.14 | Sparse matrices                                   | 66  |
|   | 2.15 | The eigenvalue problem                            | 75  |
|   | 2.16 | The MATLAB function eig                           | 78  |
|   | 2.17 | Summary                                           | 82  |
|   | Prob | lems                                              | 82  |
| 3 | Root | s of equations                                    |     |
|   | 3.1  | Introduction                                      | 85  |
|   | 3.2  | The nature of solutions to non-linear equations   | 87  |
|   | 3.3  | The bisection algorithm                           | 89  |
|   | 3.4  | Iterative or fixed point methods                  | 89  |
|   | 3.5  | The convergence of iterative methods              | 90  |
|   | 3.6  | Ranges for convergence and chaotic behaviour      | 92  |
|   | 3.7  | Newton's method                                   | 94  |
|   | 3.8  | Schroder's method                                 | 98  |
|   | 3.9  | Numerical problems                                | 99  |
|   | 3.10 | The MATLAB function fzero and comparative studies | 102 |
|   | 3.11 | Methods for finding all the roots of a polynomial | 103 |
|   | 3.12 | Bairstow's method                                 | 103 |
|   | 3.13 | Laguerre's method                                 | 107 |
|   | 3.14 | Solving systems of non-linear equations           | 108 |

| 5.15  | Laguerre s method                                 | 107 |
|-------|---------------------------------------------------|-----|
| 3.14  | Solving systems of non-linear equations           | 108 |
| 3.15  | Broyden's method for solving non-linear equations | 112 |
| 3.16  | Comparing the Newton and Broyden methods          | 115 |
| 3.17  | Summary                                           | 116 |
| Probl | lems                                              | 116 |

vi

3

| Con | tents   |
|-----|---------|
| COL | i cinto |

| 4 | Diffe | erentiation and integration                 |       |
|---|-------|---------------------------------------------|-------|
|   | 4.1   | Introduction                                | 120   |
|   | 4.2   | Numerical differentiation                   | 121   |
|   | 4.3   | Numerical integration                       | 124   |
|   | 4.4   | Simpson's rule                              | 126   |
|   | 4.5   | Newton-Cotes formulae                       | 129   |
|   | 4.6   | Romberg integration                         | 131   |
|   | 4.7   | Gaussian integration                        | 133   |
|   | 4.8   | Infinite ranges of integration              | 136   |
|   | 4.9   | Gauss-Chebyshev formulae                    | 140   |
|   | 4.10  | Filon's sine and cosine formulae            | 0 141 |
|   | 4.11  | Problems in the evaluation of integrals     | 145   |
|   | 4.12  | Test integrals                              | 147   |
|   | 4.13  | Repeated integrals                          | 149   |
|   | 4.14  | Simpson's rule for repeated integrals       | 150   |
|   | 4.15  | Gaussian integration for repeated integrals | 152   |
|   | 4.16  | Summary                                     | 154   |
|   | Probl | lems                                        | 155   |
|   |       |                                             |       |

#### **5** Differential equations

| 5.1   | Introduction                                    | 159 |  |
|-------|-------------------------------------------------|-----|--|
| 5.2   | Euler's method                                  | 161 |  |
| 5.3   | The problem of stability                        | 163 |  |
| 5.4   | The trapezoidal method                          | 166 |  |
| 5.5   | Runge–Kutta methods                             | 168 |  |
| 5.6   | Predictor-corrector methods                     | 173 |  |
| 5.7   | Hamming's method and the use of error estimates | 175 |  |
| 5.8   | Error propagation in differential equations     | 177 |  |
| 5.9   | The stability of particular numerical methods   | 178 |  |
| 5.10  | Systems of simultaneous differential equations  | 180 |  |
| 5.11  | The Lorenz equations                            | 184 |  |
| 5.12  | The predator-prey problem                       | 186 |  |
| 5.13  | Differential equations applied to neural nets   | 187 |  |
| 5.14  | Higher-order differential equations             | 191 |  |
| 5.15  | Stiff equations                                 | 192 |  |
| 5.16  | Special techniques                              | 195 |  |
| 5.17  | Extrapolation techniques                        | 198 |  |
| 5.18  | Summary                                         | 200 |  |
| Probl | lems                                            | 200 |  |

| Contents |
|----------|
|----------|

| 6 | Bou   | ndary value problems                                      |     |
|---|-------|-----------------------------------------------------------|-----|
|   | 6.1   | Introduction                                              | 202 |
|   | 6.2   | The shooting method                                       | 204 |
|   | 6.3   | The finite difference method                              | 206 |
|   | 6.4   | Two-point boundary value problems                         | 208 |
|   | 6.5   | Parabolic partial differential equations                  | 214 |
|   | 6.6   | Hyperbolic partial differential equations                 | 218 |
|   | 6.7   | Elliptic partial differential equations                   | 221 |
|   | 6.8   | Summary                                                   | 227 |
|   | Prob  | lems                                                      | 228 |
| _ |       | and a sense from the activity of the second second second |     |
| 7 | Fitti | ng functions to data                                      |     |
|   | 7.1   | Introduction                                              | 231 |
|   | 7.2   | Interpolation using polynomials                           | 231 |
|   | 7.3   | Interpolation using splines                               | 234 |
|   | 7.4   | Fourier analysis of discrete data                         | 238 |
|   | 7.5   | Fitting functions to data: least squares criteria         | 252 |
|   | 7.6   | Polynomial least squares                                  | 254 |
|   | 7.7   | A problem with polynomial least squares fitting           | 257 |
|   | 7.8   | General least squares                                     | 258 |
|   | 7.9   | Transforming data                                         | 260 |
|   | 7.10  | Summary                                                   | 263 |
|   | Prob  | lems                                                      | 264 |
| 8 | Opti  | misation methods                                          |     |
|   | 8.1   | Introduction                                              | 269 |
|   | 8.2   | Linear programming problems                               | 269 |
|   | 8.3   | The conjugate gradient method                             | 276 |
|   | 8.4   | The conjugate gradient algorithm for solving              |     |
|   |       | linear equation systems                                   | 281 |
|   | 8.5   | Genetic algorithms                                        | 284 |
|   | 8.6   | Summary                                                   | 295 |
|   | Prob  | lems                                                      | 295 |

viii

#### Contents

#### Appendix 1 – Matrix algebra

| A1.1                  | Introduction                 | 297 |
|-----------------------|------------------------------|-----|
| A1.2                  | Matrices and vectors         | 297 |
| A1.3                  | Some special matrices        | 298 |
| A1.4                  | Determinants                 | 299 |
| A1.5                  | Matrix operations            | 300 |
| A1.6                  | Complex matrices             | 301 |
| A1.7                  | Matrix properties            | 302 |
| A1.8                  | Some matrix relationships    | 302 |
| A1.9                  | Eigenvalues                  | 303 |
| A1.10                 | Definition of norms          | 303 |
| A1.11                 | Reduced row echelon form     | 304 |
| Appendix              | 2 – List of MATLAB functions | 305 |
| References            | 5                            | 309 |
| Solutions to problems |                              | 313 |
| Index                 |                              | 323 |

#### ix