Logic and its Applications

Edmund Burke and Eric Foxley

PRENTICE HALL
London New York Toronto Sydney Tokyo Singapore
Madrid Mexico City Munich

Contents

	Pre	face	xiii
1	Pro	positional logic	1
	1.1	•	1
	1.2	Logical connectives	2
		1.2.1 Negation (not)	2
		1.2.2 Conjunction (and)	2 2 2 4 5 7
		1.2.3 Disjunction (or)	4
	,	1.2.4 Implication	5
		1.2.5 Equivalence	7
		1.2.6 Sum and product notations	7
		1.2.7 Priorities of operators	8 9
	1.3	Truth-tables of formulae	9
		1.3.1 How to construct the truth-table of a formula	9
		1.3.2 Identical truth-tables	11
		1.3.3 Interpretations and models	12
		1.3.4 Tautologies, absurdities and mixed formulae	12
	1.4	Other logical connectives	14
		1.4.1 Truth functions	14
		1.4.2 Monadic operators	15
		1.4.3 Dyadic operators	15
		1.4.4 Triadic operators	17
		1.4.5 Representing truth functions in terms of dyadic	
		and monadic operators	19
	1.5	Manipulating propositional formulae	20
		1.5.1 Standard identities	20
		1.5.2 Complete sets of connectives	21
		1.5.3 Other complete sets of connectives	22
		1.5.4 Sheffer functions	23

vi Contents

		1.5.5 Normal forms	24
	1.6	The negation of propositional formulae	26
		1.6.1 Definition	26
		1.6.2 Generalized De Morgan's law	27
		1.6.3 Extended disjunction and conjunction	29
		1.6.4 Duality	29
	1.7	Arguments and argument forms	32
		1.7.1 Some definitions associated with formulae	32
		1.7.2 Some rules for propositional formulae	33
		1.7.3 The validity of an argument	34
		1.7.4 Mathematical if-and-only-if proofs	36
		1.7.5 A theorem	37
		1.7.6 Another theorem	38
	1.8		39
		Worked examples	39
		Exercises	47
2	For	mal approach to propositional logic	52
	2.1	Introduction	52
		2.1.1 Formal systems of propositional logic	53
		2.1.2 Proofs and deductions	55
		2.1.3 Constructing formal systems	57
		2.1.4 The relationship between formal systems and	
		interpretations	59
	2.2	The formal propositional logic system L	59
		2.2.1 The construction of system L	60
		2.2.2 Proofs in system L	62
		2.2.3 Deductions in system L	63
		2.2.4 Derived rules of inference in system L	65
		2.2.5 Examples	69
		2.2.6 Notation for rules	70
	2.3	The soundness and completeness theorems for system L	71
		2.3.1 Introduction	71
		2.3.2 The soundness theorem for system L	72
		2.3.3 The completeness theorem for system L	73
	2.4	Independence of axioms and rules	76
	2.5	Lemmon's system of propositional logic	78
		2.5.1 An introduction to the system	78
		2.5.2 Proofs and deductions in Lemmon's system	80
		2.5.3 Examples of deductions in Lemmon's system	80
	2.6		85
	2.7	Worked examples	86
	28	Evercises	02

			Contents	vii
3		olications to logic design		95
		Introduction		95
	3.2	•		98
		3.2.1 A simple example		98
		3.2.2 Karnaugh maps		101
		3.2.3 Quine-McClusky minimization		105
	3.3			110
		3.3.1 Definition		111
		3.3.2 A few four-variable universal decision elements		111
	3.4	Logic design		113
		3.4.1 Binary arithmetic adders		113
		3.4.2 Sequential logic		115
	3.5	Summary		122
	3.6	Worked examples		122
		Exercises		128
4	Pre	dicate logic		131
•		Informal introduction		131
	7.1	4.1.1 Background		131
		4.1.2 Universal and existential quantifiers		133
		4.1.3 Translating between first-order languages and the	ı.	133
		English language		136
		4.1.4 Hints for translating from English to logic		139
		4.1.5 Examples		140
		4.1.6 Summary		141
		4.1.7 Exercises		142
	4.2			143
	7.2	4.2.1 First-order languages		143
		4.2.2 Interpretations		148
		4.2.3 Satisfaction		151
		4.2.4 Truth-tables of interpretations		153
		4.2.5 Herbrand interpretations		155
		4.2.6 Summary		157
		4.2.7 Worked examples		157
		4.2.8 Exercises		159
	4.3	Syntactical systems of predicate logic		161
	4.5	4.3.1 The system K of predicate logic		162
		4.3.2 Discussion of the system K		163
		4.3.3 First-order theories		171
		4.3.4 Summary		173
		4.3.5 Worked example		173
		4.3.6 Exercises		174
	4.4	Soundness and completeness		175
	4.4	Boundiess and Completeness		1/3

viii Contents

		4.4.1 Introduction	175
		4.4.2 The soundness of system K	176
		4.4.3 Consistency	180
		4.4.4 The completeness of system K	180
		4.4.5 Summary	185
		4.4.6 Worked examples	185
		4.4.7 Exercises	188
5	Log	ic programming	190
	5.1	Introduction	190
	5.2	Programming with propositional logic	190
		5.2.1 Definitions for propositional logic	190
		5.2.2 Propositional resolution	191
		5.2.3 Refutation and deductions	193
		5.2.4 Negation in logic programming	198
		5.2.5 SLD-resolution	199
	5.3	Clausal form for predicate logic	202
		5.3.1 Prenex form	202
		5.3.2 Clausal form	204
		5.3.3 Horn clauses	206
	5.4	The semantics of logic programming	207
		5.4.1 Horn clauses and their Herbrand models	209
		5.4.2 Logic programs and their Herbrand models	210
		5.4.3 Least Herbrand models	210
		5.4.4 Construction of least Herbrand models	211
	5.5	Unification and answer substitutions	214
		5.5.1 Substitutions	214
		5.5.2 Unification	216
		5.5.3 Practicalities	218
	5.6	Programming with predicate logic	219
		5.6.1 The resolution rule	219
		5.6.2 The proof strategy of Prolog: SLD-resolution	219
		5.6.3 Negation in logic programming: the closed-world	
		assumption	222
	5.7	Concluding remarks	223
	5.8	Worked examples	224
	5.9	Exercises	228
6	For	mal system specification	232
	6.1	Introduction	232
		6.1.1 A simple example	233
		6.1.2 A state schema	233
		6.1.3 Operations or events and their schema	235

7

		Contents	ix
	6.1.4 Pre- and post-conditions		241
6.2	•		241
6.3	The Z specification language		243
	6.3.1 Basic type definitions		244
	6.3.2 Free type definitions		244
	6.3.3 Schema inclusion		245
	6.3.4 Schema types		245
	6.3.5 Example: a computer file system		249
	6.3.6 Axiom schema		255
6.4	Schema algebra		256
	6.4.1 Linear notation		256
	6.4.2 Schema extension		256
	6.4.3 Some other types of definition		256
4	6.4.4 Schema inclusion		257
	6.4.5 The tuple and pred operators		257
	6.4.6 Ornamentation of schema names		257
	6.4.7 Logical operations on schema		257
	6.4.8 Schema quantification		258
	6.4.9 Identifier renaming		259
	6.4.10 Identifier hiding		259
	6.4.11 Schema pre-condition		260
	6.4.12 Schema composition		260
	6.4.13 Schema piping		262
	6.4.14 Axiomatic descriptions		263
6.5			263
6.6	•		264
	6.6.1 Some simple examples		264
	6.6.2 Case study: a video-rental shop		271
	6.6.3 Case study: a car-ferry terminal		274
6.7	Exercises		282
Append	dix A: Mathematical background		284
A 1	Induction proofs		284
A2	Set theory		286
	A2.1 Comprehensive specification of a set		286
	A2.2 Operations involving sets		287
A3	Bags		288
A4	Relations		289
	A4.1 Domain and range		289
	A4.2 Composition		290
	A4.3 Domain and range operations		290
	A4.4 Override operation		292
	A4.5 Set image		292

x Contents

	A4.6 Equivalence relations		293
A5	Functions		294
A6	Sequences		295
Appen	dix B: Other notations		297
B1	Alternative notations		297
B 2	Polish notation		297
B 3	Worked examples		300
B4	Exercises		300
Appendix C: Symbols used in the book			302
Index			305