Contents

Introdu	ction	ix
Chapte	r 1. (Bounded) cohomology of groups	1
1.1.	Cohomology of groups	1
1.2.	The topological interpretation of group cohomology	3
1.3.	Bounded cohomology of groups	3
1.4.	The comparison map and exact bounded cohomology	5
1.5.	The bar resolution	5
1.6.	Topology and bounded cohomology	6
1.7.	Further readings	6
Chapter	r 2. (Bounded) cohomology of groups in low degree	9
	(Bounded) group cohomology in degree zero and one	9
2.2.	Group cohomology in degree two	9
2.3.	Bounded group cohomology in degree two: quasimorphisms	12
2.4.	Homogeneous quasimorphisms	13
2.5.	Quasimorphisms on abelian groups	14
2.6.	The bounded cohomology of free groups in degree 2	15
2.7.	Homogeneous 2-cocycles	16
2.8.	The image of the comparison map	18
2.9.	Further readings	20
Chapter	3. Amenability	23
3.1.	Abelian groups are amenable	25
3.2.	Other amenable groups	26
3.3.	Amenability and bounded cohomology	27
3.4.	Johnson's characterization of amenability	28
3.5.	A characterization of finite groups via bounded cohomology	29
3.6.	Further readings	30
Chapter	4. (Bounded) group cohomology via resolutions	33
4.1.	Relative injectivity	33
4.2.	Resolutions of Γ -modules	35
4.3.	The classical approach to group cohomology via resolutions	38
4.4.	The topological interpretation of group cohomology revisited	39
4.5.	Bounded cohomology via resolutions	40
4.6.	Relatively injective normed Γ -modules	41
4.7.	Resolutions of normed Γ -modules	41
4.8.	More on amenability	44
4.9.	Amenable spaces	45

4.10. Alternating cochains	48
4.11. Further readings	49
Chapter 5. Bounded cohomology of topological spaces	53
5.1. Basic properties of bounded cohomology of spaces	53
5.2. Bounded singular cochains as relatively injective modules	54
5.3. The aspherical case	56
5.4. Ivanov's contracting homotopy	56
5.5. Gromov's Theorem	58
5.6. Alternating cochains	59
5.7. Relative bounded cohomology	60
5.8. Further readings	62
Chapter 6. ℓ^1 -homology and duality	65
6.1. Normed chain complexes and their topological duals	65
6.2. ℓ^1 -homology of groups and spaces	66
6.3. Duality: first results	67
6.4. Some results by Matsumoto and Morita	68
6.5. Injectivity of the comparison map	70
6.6. The translation principle	71
6.7. Gromov equivalence theorem	73
6.8. Further readings	75
o.o. Turner readings	10
Chapter 7. Simplicial volume	77
7.1. The case with non-empty boundary	77
7.2. Elementary properties of the simplicial volume	78
7.3. The simplicial volume of Riemannian manifolds	79
7.4. Simplicial volume of gluings	80
7.5. Simplicial volume and duality	82
7.6. The simplicial volume of products	83
7.7. Fiber bundles with amenable fibers	83
7.8. Further readings	84
Chapter 8. The proportionality principle	87
8.1. Continuous cohomology of topological spaces	87
8.2. Continuous cochains as relatively injective modules	88
8.3. Continuous cochains as strong resolutions of \mathbb{R}	90
8.4. Straightening in non-positive curvature	92
8.5. Continuous cohomology versus singular cohomology	92
8.6. The transfer map	93
8.7. Straightening and the volume form	95 95
8.8. Proof of the proportionality principle	97
8.9. The simplicial volume of hyperbolic manifolds	97
8.10. Hyperbolic straight simplices	98
8.11. The seminorm of the volume form	99
8.12. The case of surfaces	99 100
8.13. The simplicial volume of negatively curved manifolds	100
8.14. The simplicial volume of flat manifolds	100
8.15. Further readings	101
ouror i urmor rouumbo	101

CONTENTS

 Chapter 9. Additivity of the simplicial volume 9.1. A cohomological proof of subadditivity 9.2. A cohomological proof of Gromov additivity theorem 9.3. Further readings 	105 105 107 110
 Chapter 10. Group actions on the circle 10.1. Homeomorphisms of the circle and the Euler class 10.2. The bounded Euler class 10.3. The (bounded) Euler class of a representation 10.4. The rotation number of a homeomorphism 10.5. Increasing degree one map of the circle 10.6. Semi-conjugacy 10.7. Ghys' Theorem 10.8. The canonical real bounded Euler cocycle 10.9. Further readings 	$ 113 \\ 113 \\ 114 \\ 115 \\ 116 \\ 119 \\ 120 \\ 122 \\ 126 \\ 129 $
 Chapter 11. The Euler class of sphere bundles 11.1. Topological, smooth and linear sphere bundles 11.2. The Euler class of a sphere bundle 11.3. Classical properties of the Euler class 11.4. The Euler class of oriented vector bundles 11.5. The euler class of circle bundles 11.6. Circle bundles over surfaces 11.7. Further readings 	$ 131 \\ 133 \\ 136 \\ 138 \\ 140 \\ 142 \\ 143 $
 Chapter 12. Milnor-Wood inequalities and maximal representations 12.1. Flat sphere bundles 12.2. The bounded Euler class of a flat circle bundle 12.3. Milnor-Wood inequalities 12.4. Flat circle bundles on surfaces with boundary 12.5. Maximal representations 12.6. Further readings 	$145 \\ 145 \\ 149 \\ 151 \\ 154 \\ 162 \\ 166$
 Chapter 13. The bounded Euler class in higher dimensions and the Chern conjecture 13.1. Ivanov-Turaev cocycle 13.2. Representing cycles via simplicial cycles 13.3. The bounded Euler class of a flat linear sphere bundle 13.4. The Chern conjecture 13.5. Further readings 	169 169 173 174 178 179
Index	181
List of Symbols	
Bibliography	