Otto Moser

3D-Echtzeitkollisionsschutz für Drehmaschinen

Mit 66 Abbildungen

Springer-Verlag
Berlin Heidelberg New York London Paris
Tokyo Hong Kong Barcelona Budapest 1991

Inhaltsverzeichnis

1	Einleitung	1
1.1	Allgemeine Problembeschreibung	1
1.2	Entwicklung und Stand der Technik bei Kollisionsschutzsystemen	5
1.3	Anforderungsprofil eines 3D-Echtzeit-Kollisionsschutzsystems	10
1.4	Zielsetzung	13
2	Darstellung der Maschinengeometrien im Kollisionsschutz	15
2.1	Probleme bei der Modellauswahl	15
2.2	Untersuchung verschiedener Modelle auf ihre Tauglichkeit	16
2.2.1	Analytische Modelle	17
2.2.2	Diskrete Modelle	18
2.2.3	Auswahl eines Modells	18
2.3	Erstellung des Simulationsmodells für den Kollisionsschutz	20
2.3.1	Geometrie- und Konfigurationsdatenverwaltung	21
2.3.2	Konfiguration des Simulationsmodells	23
3	Rahmenbedingungen für die Programm- und Datenstruktur	29
3.1	Programmstruktur	29
3.2	Datenstruktur	33
4	Bewegungssimulation	35
4.1	Berücksichtigung durchlaufenener Volumina im Simulationsmodell	36
4.2	Synchronisation von Maschinenbewegung und Kollisionsschutz	41
4.3	Wahl des Bezugspunktes für die Vorausberechnung	43
4.4	Definition des Kollisionsschutzvorschubes	44
4.5	Berechnung der Bewegungsinformationen	47
4.6	Verfahrwegberechnung	48
4.6.1	Geradenverfahrbewegung	49
4.6.2	Bewegung auf nicht geraden Bahnen	60
4.6.3	Werkzeugwechsel	68
4.7	Istpositionskorrektur	70
4.8	Pufferverwaltung	76

5	Werkstückaktualisierung	79
5.1	Technologische Zerspanbedingungen	79
5.2	Abbildung der Werkzeugschneide	81
5.3	Bearbeitungssimulation	83
6	Kollisionserkennung	86
6.1	Kollisionstestmatrix	86
6.2	Reduzierung der Testpaarungen	88
6.2.1	Hüllkörpertests	88
6.2.2	Prioritätslisten	92
6.2.3	Bewertung der Verfahren	94
6.3	Überprüfen von Flächen auf Durchdringungen	99
6.3.1	Zweidimensionaler Lösungsansatz	100
6.3.2	Allgemeine Lösung der Berechnung von Durchdringungen	101
6.3.3	Verbesserungen im Hinblick auf Rechenzeit	110
6.4	Qualitätsbewertung der vorgestellten Verfahren	113
7	Ablaufsteuerung	120
7.1	Kommunikation mit der Maschinensteuerung	120
7.2	Aufbereitung der Daten für den Kollisionsschutz	122
7.3	Überwachung der Echtzeitbedingung	124
8	Realisierung des Kollisionsschutzsystems	125
8.1	Hardware des Kollisionsschutzrechners	125
8.1.1	Abschätzung des Speicherplatzbedarfes	126
8.1.2	Abschätzung des Rechenleistungsbedarfes	127
8.1.3	Rahmenbedingungen für die Hardware des Kollisionsschutzsystems	128
8.1.4	Prüfung vorhandener mpst-Bus Komponenten	129
8.1.5	Spezielle Hardware für den Kollisionsschutz	130
8.2	Dezentrale Datenstruktur für ein Mehrprozessorsystem	135
8.3	Kommunikation	138
8.3.1	Aufbau der Nachrichtenpuffer	139
8.3.2	Struktur des Linkprozesses	141
8.4	Ergebnisse beim praktischen Einsatz des Kollisionsschutzes	145
9	Zusammenfassung	153
10	Literaturverzeichnis	155